2011-03-06 19:50:44 -05:00
|
|
|
/*
|
2013-01-28 21:03:27 -05:00
|
|
|
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
|
2011-03-07 20:41:50 -05:00
|
|
|
* http://paperjs.org/
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2013-01-28 21:03:27 -05:00
|
|
|
* Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey
|
2011-03-06 19:50:44 -05:00
|
|
|
* http://lehni.org/ & http://jonathanpuckey.com/
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-07-01 06:17:45 -04:00
|
|
|
* Distributed under the MIT license. See LICENSE file for details.
|
|
|
|
*
|
2011-03-07 20:41:50 -05:00
|
|
|
* All rights reserved.
|
2011-03-06 19:50:44 -05:00
|
|
|
*/
|
|
|
|
|
2011-06-22 18:56:05 -04:00
|
|
|
/**
|
|
|
|
* @name Curve
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-06-27 08:58:17 -04:00
|
|
|
* @class The Curve object represents the parts of a path that are connected by
|
2011-06-27 09:07:08 -04:00
|
|
|
* two following {@link Segment} objects. The curves of a path can be accessed
|
|
|
|
* through its {@link Path#curves} array.
|
2011-06-27 08:58:17 -04:00
|
|
|
*
|
|
|
|
* While a segment describe the anchor point and its incoming and outgoing
|
|
|
|
* handles, a Curve object describes the curve passing between two such
|
|
|
|
* segments. Curves and segments represent two different ways of looking at the
|
|
|
|
* same thing, but focusing on different aspects. Curves for example offer many
|
|
|
|
* convenient ways to work with parts of the path, finding lengths, positions or
|
|
|
|
* tangents at given offsets.
|
2011-06-22 18:56:05 -04:00
|
|
|
*/
|
2013-05-27 15:48:58 -04:00
|
|
|
var Curve = Base.extend(/** @lends Curve# */{
|
2013-06-23 23:18:32 -04:00
|
|
|
_class: 'Curve',
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* Creates a new curve object.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2013-04-21 09:43:57 -04:00
|
|
|
* @name Curve#initialize
|
2011-05-23 11:24:36 -04:00
|
|
|
* @param {Segment} segment1
|
|
|
|
* @param {Segment} segment2
|
|
|
|
*/
|
2013-04-21 09:43:57 -04:00
|
|
|
/**
|
|
|
|
* Creates a new curve object.
|
|
|
|
*
|
|
|
|
* @name Curve#initialize
|
|
|
|
* @param {Point} point1
|
|
|
|
* @param {Point} handle1
|
|
|
|
* @param {Point} handle2
|
|
|
|
* @param {Point} point2
|
|
|
|
*/
|
|
|
|
/**
|
|
|
|
* Creates a new curve object.
|
|
|
|
*
|
|
|
|
* @name Curve#initialize
|
|
|
|
* @ignore
|
|
|
|
* @param {Number} x1
|
|
|
|
* @param {Number} y1
|
|
|
|
* @param {Number} handle1x
|
|
|
|
* @param {Number} handle1y
|
|
|
|
* @param {Number} handle2x
|
|
|
|
* @param {Number} handle2y
|
|
|
|
* @param {Number} x2
|
|
|
|
* @param {Number} y2
|
|
|
|
*/
|
2013-05-27 15:48:58 -04:00
|
|
|
initialize: function Curve(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
|
2011-05-26 06:09:02 -04:00
|
|
|
var count = arguments.length;
|
2013-06-25 12:54:13 -04:00
|
|
|
if (count === 3) {
|
|
|
|
// Undocumented internal constructor, used by Path#getCurves()
|
|
|
|
// new Segment(path, segment1, segment2);
|
|
|
|
this._path = arg0;
|
|
|
|
this._segment1 = arg1;
|
|
|
|
this._segment2 = arg2;
|
|
|
|
} else if (count === 0) {
|
2011-03-06 07:24:15 -05:00
|
|
|
this._segment1 = new Segment();
|
|
|
|
this._segment2 = new Segment();
|
2013-06-25 12:54:13 -04:00
|
|
|
} else if (count === 1) {
|
|
|
|
// new Segment(segment);
|
2012-12-20 12:03:11 -05:00
|
|
|
// Note: This copies from existing segments through bean getters
|
2011-03-06 07:24:15 -05:00
|
|
|
this._segment1 = new Segment(arg0.segment1);
|
|
|
|
this._segment2 = new Segment(arg0.segment2);
|
2013-06-25 12:54:13 -04:00
|
|
|
} else if (count === 2) {
|
|
|
|
// new Segment(segment1, segment2);
|
2011-04-30 18:29:10 -04:00
|
|
|
this._segment1 = new Segment(arg0);
|
|
|
|
this._segment2 = new Segment(arg1);
|
2012-12-20 12:03:11 -05:00
|
|
|
} else {
|
|
|
|
var point1, handle1, handle2, point2;
|
2013-06-25 12:54:13 -04:00
|
|
|
if (count === 4) {
|
2012-12-20 12:03:11 -05:00
|
|
|
point1 = arg0;
|
|
|
|
handle1 = arg1;
|
|
|
|
handle2 = arg2;
|
|
|
|
point2 = arg3;
|
2013-06-25 12:54:13 -04:00
|
|
|
} else if (count === 8) {
|
2012-12-20 12:03:11 -05:00
|
|
|
// Convert getValue() array back to points and handles so we
|
|
|
|
// can create segments for those.
|
|
|
|
point1 = [arg0, arg1];
|
|
|
|
point2 = [arg6, arg7];
|
2013-05-10 17:59:30 -04:00
|
|
|
handle1 = [arg2 - arg0, arg3 - arg1];
|
2012-12-20 12:03:11 -05:00
|
|
|
handle2 = [arg4 - arg6, arg5 - arg7];
|
|
|
|
}
|
|
|
|
this._segment1 = new Segment(point1, null, handle1);
|
|
|
|
this._segment2 = new Segment(point2, handle2, null);
|
2011-03-06 07:24:15 -05:00
|
|
|
}
|
|
|
|
},
|
|
|
|
|
2011-05-01 19:17:21 -04:00
|
|
|
_changed: function() {
|
|
|
|
// Clear cached values.
|
|
|
|
delete this._length;
|
2012-12-18 08:35:21 -05:00
|
|
|
delete this._bounds;
|
2011-05-01 19:17:21 -04:00
|
|
|
},
|
|
|
|
|
2011-03-06 07:24:15 -05:00
|
|
|
/**
|
|
|
|
* The first anchor point of the curve.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Point
|
|
|
|
* @bean
|
2011-03-06 07:24:15 -05:00
|
|
|
*/
|
|
|
|
getPoint1: function() {
|
|
|
|
return this._segment1._point;
|
|
|
|
},
|
|
|
|
|
2011-03-13 13:31:00 -04:00
|
|
|
setPoint1: function(point) {
|
|
|
|
point = Point.read(arguments);
|
2011-03-06 07:24:15 -05:00
|
|
|
this._segment1._point.set(point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The second anchor point of the curve.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Point
|
|
|
|
* @bean
|
2011-03-06 07:24:15 -05:00
|
|
|
*/
|
|
|
|
getPoint2: function() {
|
|
|
|
return this._segment2._point;
|
|
|
|
},
|
|
|
|
|
2011-03-13 13:31:00 -04:00
|
|
|
setPoint2: function(point) {
|
|
|
|
point = Point.read(arguments);
|
2011-03-06 07:24:15 -05:00
|
|
|
this._segment2._point.set(point.x, point.y);
|
|
|
|
},
|
2011-06-30 06:01:51 -04:00
|
|
|
|
2011-03-06 07:24:15 -05:00
|
|
|
/**
|
|
|
|
* The handle point that describes the tangent in the first anchor point.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Point
|
|
|
|
* @bean
|
2011-03-06 07:24:15 -05:00
|
|
|
*/
|
|
|
|
getHandle1: function() {
|
|
|
|
return this._segment1._handleOut;
|
|
|
|
},
|
|
|
|
|
2011-03-13 13:31:00 -04:00
|
|
|
setHandle1: function(point) {
|
|
|
|
point = Point.read(arguments);
|
2011-03-06 07:24:15 -05:00
|
|
|
this._segment1._handleOut.set(point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The handle point that describes the tangent in the second anchor point.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Point
|
|
|
|
* @bean
|
2011-03-06 07:24:15 -05:00
|
|
|
*/
|
|
|
|
getHandle2: function() {
|
|
|
|
return this._segment2._handleIn;
|
|
|
|
},
|
|
|
|
|
2011-03-13 13:31:00 -04:00
|
|
|
setHandle2: function(point) {
|
|
|
|
point = Point.read(arguments);
|
2011-03-06 07:24:15 -05:00
|
|
|
this._segment2._handleIn.set(point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The first segment of the curve.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Segment
|
|
|
|
* @bean
|
2011-03-06 07:24:15 -05:00
|
|
|
*/
|
|
|
|
getSegment1: function() {
|
|
|
|
return this._segment1;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The second segment of the curve.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Segment
|
|
|
|
* @bean
|
2011-03-06 07:24:15 -05:00
|
|
|
*/
|
|
|
|
getSegment2: function() {
|
|
|
|
return this._segment2;
|
2011-03-06 07:29:17 -05:00
|
|
|
},
|
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* The path that the curve belongs to.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Path
|
|
|
|
* @bean
|
|
|
|
*/
|
2011-03-06 08:26:09 -05:00
|
|
|
getPath: function() {
|
|
|
|
return this._path;
|
|
|
|
},
|
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* The index of the curve in the {@link Path#curves} array.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-27 14:15:15 -04:00
|
|
|
* @type Number
|
2011-05-23 11:24:36 -04:00
|
|
|
* @bean
|
|
|
|
*/
|
2011-03-06 08:26:09 -05:00
|
|
|
getIndex: function() {
|
2011-05-02 19:25:23 -04:00
|
|
|
return this._segment1._index;
|
2011-03-06 08:26:09 -05:00
|
|
|
},
|
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* The next curve in the {@link Path#curves} array that the curve
|
|
|
|
* belongs to.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Curve
|
|
|
|
* @bean
|
|
|
|
*/
|
2011-03-06 08:26:09 -05:00
|
|
|
getNext: function() {
|
|
|
|
var curves = this._path && this._path._curves;
|
2011-05-02 19:25:23 -04:00
|
|
|
return curves && (curves[this._segment1._index + 1]
|
2011-04-30 18:22:29 -04:00
|
|
|
|| this._path._closed && curves[0]) || null;
|
2011-03-06 08:26:09 -05:00
|
|
|
},
|
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* The previous curve in the {@link Path#curves} array that the curve
|
|
|
|
* belongs to.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @type Curve
|
|
|
|
* @bean
|
|
|
|
*/
|
2011-03-06 08:26:09 -05:00
|
|
|
getPrevious: function() {
|
|
|
|
var curves = this._path && this._path._curves;
|
2011-05-02 19:25:23 -04:00
|
|
|
return curves && (curves[this._segment1._index - 1]
|
2011-04-30 18:22:29 -04:00
|
|
|
|| this._path._closed && curves[curves.length - 1]) || null;
|
2011-03-06 08:26:09 -05:00
|
|
|
},
|
2011-04-21 13:54:32 -04:00
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* Specifies whether the handles of the curve are selected.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-30 13:42:17 -04:00
|
|
|
* @type Boolean
|
2011-05-23 11:24:36 -04:00
|
|
|
* @bean
|
|
|
|
*/
|
2011-04-21 13:54:32 -04:00
|
|
|
isSelected: function() {
|
2011-04-27 05:52:56 -04:00
|
|
|
return this.getHandle1().isSelected() && this.getHandle2().isSelected();
|
2011-04-21 13:54:32 -04:00
|
|
|
},
|
2011-03-06 08:26:09 -05:00
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
setSelected: function(selected) {
|
|
|
|
this.getHandle1().setSelected(selected);
|
|
|
|
this.getHandle2().setSelected(selected);
|
|
|
|
},
|
|
|
|
|
2011-12-24 18:19:01 -05:00
|
|
|
getValues: function() {
|
|
|
|
return Curve.getValues(this._segment1, this._segment2);
|
2011-07-07 10:07:29 -04:00
|
|
|
},
|
|
|
|
|
2011-12-24 18:19:01 -05:00
|
|
|
getPoints: function() {
|
2011-07-07 10:07:29 -04:00
|
|
|
// Convert to array of absolute points
|
2011-12-24 18:19:01 -05:00
|
|
|
var coords = this.getValues(),
|
2011-07-07 10:07:29 -04:00
|
|
|
points = [];
|
|
|
|
for (var i = 0; i < 8; i += 2)
|
2013-05-28 02:57:31 -04:00
|
|
|
points.push(new Point(coords[i], coords[i + 1]));
|
2011-07-07 10:07:29 -04:00
|
|
|
return points;
|
2011-03-06 19:00:45 -05:00
|
|
|
},
|
2011-03-06 07:29:17 -05:00
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
// DOCS: document Curve#getLength(from, to)
|
|
|
|
/**
|
|
|
|
* The approximated length of the curve in points.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-27 14:15:15 -04:00
|
|
|
* @type Number
|
2011-05-23 11:24:36 -04:00
|
|
|
* @bean
|
|
|
|
*/
|
2012-12-15 13:51:31 -05:00
|
|
|
// Hide parameters from Bootstrap so it injects bean too
|
2012-12-21 10:41:57 -05:00
|
|
|
getLength: function(/* from, to */) {
|
|
|
|
var from = arguments[0],
|
|
|
|
to = arguments[1],
|
2013-04-25 20:47:11 -04:00
|
|
|
fullLength = arguments.length === 0 || from === 0 && to === 1;
|
2011-05-01 19:17:21 -04:00
|
|
|
if (fullLength && this._length != null)
|
|
|
|
return this._length;
|
2012-12-21 10:41:57 -05:00
|
|
|
var length = Curve.getLength(this.getValues(), from, to);
|
2011-05-01 19:17:21 -04:00
|
|
|
if (fullLength)
|
|
|
|
this._length = length;
|
|
|
|
return length;
|
2011-03-06 07:56:47 -05:00
|
|
|
},
|
|
|
|
|
2013-04-25 20:37:19 -04:00
|
|
|
getArea: function() {
|
|
|
|
return Curve.getArea(this.getValues());
|
|
|
|
},
|
|
|
|
|
2011-06-05 06:34:24 -04:00
|
|
|
getPart: function(from, to) {
|
2011-07-09 04:08:43 -04:00
|
|
|
return new Curve(Curve.getPart(this.getValues(), from, to));
|
2011-06-05 06:34:24 -04:00
|
|
|
},
|
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
/**
|
|
|
|
* Checks if this curve is linear, meaning it does not define any curve
|
|
|
|
* handle.
|
|
|
|
|
2011-05-30 13:42:17 -04:00
|
|
|
* @return {Boolean} {@true the curve is linear}
|
2011-03-06 18:24:33 -05:00
|
|
|
*/
|
|
|
|
isLinear: function() {
|
|
|
|
return this._segment1._handleOut.isZero()
|
|
|
|
&& this._segment2._handleIn.isZero();
|
|
|
|
},
|
|
|
|
|
2012-12-27 13:23:03 -05:00
|
|
|
getIntersections: function(curve) {
|
2013-04-25 20:17:53 -04:00
|
|
|
return Curve.getIntersections(this.getValues(), curve.getValues(),
|
2013-04-30 21:41:26 -04:00
|
|
|
this, curve, []);
|
2012-12-27 13:23:03 -05:00
|
|
|
},
|
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
// TODO: adjustThroughPoint
|
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* Returns a reversed version of the curve, without modifying the curve
|
|
|
|
* itself.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @return {Curve} a reversed version of the curve
|
|
|
|
*/
|
2011-03-06 18:24:33 -05:00
|
|
|
reverse: function() {
|
|
|
|
return new Curve(this._segment2.reverse(), this._segment1.reverse());
|
|
|
|
},
|
|
|
|
|
2012-12-30 13:49:17 -05:00
|
|
|
/**
|
2013-06-27 20:18:57 -04:00
|
|
|
* Private method that handles all types of offset / isParameter pairs and
|
|
|
|
* converts it to a curve parameter.
|
|
|
|
*/
|
|
|
|
_getParameter: function(offset, isParameter) {
|
|
|
|
return isParameter
|
|
|
|
? offset
|
|
|
|
// Accept CurveLocation objects, and objects that act like
|
|
|
|
// them:
|
|
|
|
: offset && offset.curve === this
|
|
|
|
? offset.parameter
|
|
|
|
: offset === undefined && isParameter === undefined
|
|
|
|
? 0.5 // default is in the middle
|
|
|
|
: this.getParameterAt(offset, 0);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Divides the curve into two curves at the given offset. The curve itself
|
|
|
|
* is modified and becomes the first part, the second part is returned as a
|
|
|
|
* new curve. If the modified curve belongs to a path item, the second part
|
|
|
|
* is also added to the path.
|
2013-05-01 07:29:02 -04:00
|
|
|
*
|
2013-06-27 20:18:57 -04:00
|
|
|
* @name Curve#divide
|
|
|
|
* @function
|
2013-06-27 21:15:10 -04:00
|
|
|
* @param {Number} [offset=0.5] the offset on the curve at which to split,
|
|
|
|
* or the curve time parameter if {@code isParameter} is {@code true}
|
2013-06-27 20:18:57 -04:00
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
2012-12-30 13:49:17 -05:00
|
|
|
* @return {Curve} the second part of the divided curve
|
|
|
|
*/
|
2013-07-04 22:39:55 -04:00
|
|
|
// TODO: Rename to divideAt()?
|
2013-06-27 20:18:57 -04:00
|
|
|
divide: function(offset, isParameter) {
|
|
|
|
var parameter = this._getParameter(offset, isParameter),
|
|
|
|
res = null;
|
2012-12-30 13:49:17 -05:00
|
|
|
if (parameter > 0 && parameter < 1) {
|
|
|
|
var parts = Curve.subdivide(this.getValues(), parameter),
|
2013-03-19 19:17:12 -04:00
|
|
|
isLinear = this.isLinear(),
|
2012-12-30 13:49:17 -05:00
|
|
|
left = parts[0],
|
2013-05-04 00:00:46 -04:00
|
|
|
right = parts[1];
|
2013-05-01 07:29:02 -04:00
|
|
|
|
2012-12-30 13:49:17 -05:00
|
|
|
// Write back the results:
|
2013-03-19 19:17:12 -04:00
|
|
|
if (!isLinear) {
|
2013-05-04 00:00:46 -04:00
|
|
|
this._segment1._handleOut.set(left[2] - left[0],
|
|
|
|
left[3] - left[1]);
|
2013-03-19 19:17:12 -04:00
|
|
|
// segment2 is the end segment. By inserting newSegment
|
|
|
|
// between segment1 and 2, 2 becomes the end segment.
|
|
|
|
// Convert absolute -> relative
|
2013-05-04 00:00:46 -04:00
|
|
|
this._segment2._handleIn.set(right[4] - right[6],
|
|
|
|
right[5] - right[7]);
|
2013-03-19 19:17:12 -04:00
|
|
|
}
|
2012-12-30 13:49:17 -05:00
|
|
|
|
2013-03-19 19:17:12 -04:00
|
|
|
// Create the new segment, convert absolute -> relative:
|
2012-12-30 13:49:17 -05:00
|
|
|
var x = left[6], y = left[7],
|
2013-05-28 02:57:31 -04:00
|
|
|
segment = new Segment(new Point(x, y),
|
|
|
|
!isLinear && new Point(left[4] - x, left[5] - y),
|
|
|
|
!isLinear && new Point(right[2] - x, right[3] - y));
|
2013-05-01 07:29:02 -04:00
|
|
|
|
2012-12-30 13:49:17 -05:00
|
|
|
// Insert it in the segments list, if needed:
|
|
|
|
if (this._path) {
|
2013-01-22 17:46:49 -05:00
|
|
|
// Insert at the end if this curve is a closing curve of a
|
|
|
|
// closed path, since otherwise it would be inserted at 0.
|
2013-03-01 23:19:44 -05:00
|
|
|
if (this._segment1._index > 0 && this._segment2._index === 0) {
|
2012-12-30 13:49:17 -05:00
|
|
|
this._path.add(segment);
|
|
|
|
} else {
|
|
|
|
this._path.insert(this._segment2._index, segment);
|
|
|
|
}
|
2013-03-01 23:19:44 -05:00
|
|
|
// The way Path#_add handles curves, this curve will always
|
|
|
|
// become the owner of the newly inserted segment.
|
|
|
|
// TODO: I expect this.getNext() to produce the correct result,
|
|
|
|
// but since we're inserting differently in _add (something
|
2013-05-04 00:00:46 -04:00
|
|
|
// linked with CurveLocation#divide()), this is not the case...
|
|
|
|
res = this; // this.getNext();
|
2012-12-30 13:49:17 -05:00
|
|
|
} else {
|
|
|
|
// otherwise create it from the result of split
|
|
|
|
var end = this._segment2;
|
|
|
|
this._segment2 = segment;
|
|
|
|
res = new Curve(segment, end);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
},
|
|
|
|
|
2012-12-31 16:28:41 -05:00
|
|
|
/**
|
2013-06-27 20:18:57 -04:00
|
|
|
* Splits the path this curve belongs to at the given offset. After
|
|
|
|
* splitting, the path will be open. If the path was open already, splitting
|
|
|
|
* will result in two paths.
|
2012-12-31 16:28:41 -05:00
|
|
|
*
|
2013-06-27 20:18:57 -04:00
|
|
|
* @name Curve#split
|
|
|
|
* @function
|
2013-06-27 21:15:10 -04:00
|
|
|
* @param {Number} [offset=0.5] the offset on the curve at which to split,
|
|
|
|
* or the curve time parameter if {@code isParameter} is {@code true}
|
2013-06-27 20:18:57 -04:00
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
2013-08-23 22:45:28 -04:00
|
|
|
* @return {Path} the newly created path after splitting, if any
|
2013-06-27 20:18:57 -04:00
|
|
|
* @see Path#split(index, parameter)
|
2012-12-31 16:28:41 -05:00
|
|
|
*/
|
2013-07-04 22:39:55 -04:00
|
|
|
// TODO: Rename to splitAt()?
|
2013-06-27 20:18:57 -04:00
|
|
|
split: function(offset, isParameter) {
|
2012-12-31 16:28:41 -05:00
|
|
|
return this._path
|
2013-06-27 20:18:57 -04:00
|
|
|
? this._path.split(this._segment1._index,
|
|
|
|
this._getParameter(offset, isParameter))
|
2012-12-31 16:28:41 -05:00
|
|
|
: null;
|
|
|
|
},
|
2011-03-06 18:24:33 -05:00
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
|
|
|
* Returns a copy of the curve.
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-05-23 11:24:36 -04:00
|
|
|
* @return {Curve}
|
|
|
|
*/
|
2011-03-06 07:56:47 -05:00
|
|
|
clone: function() {
|
|
|
|
return new Curve(this._segment1, this._segment2);
|
|
|
|
},
|
|
|
|
|
2011-05-23 11:24:36 -04:00
|
|
|
/**
|
2013-08-23 22:45:28 -04:00
|
|
|
* @return {String} a string representation of the curve
|
2011-05-23 11:24:36 -04:00
|
|
|
*/
|
2011-03-06 07:56:47 -05:00
|
|
|
toString: function() {
|
2011-05-02 03:57:55 -04:00
|
|
|
var parts = [ 'point1: ' + this._segment1._point ];
|
|
|
|
if (!this._segment1._handleOut.isZero())
|
|
|
|
parts.push('handle1: ' + this._segment1._handleOut);
|
|
|
|
if (!this._segment2._handleIn.isZero())
|
|
|
|
parts.push('handle2: ' + this._segment2._handleIn);
|
|
|
|
parts.push('point2: ' + this._segment2._point);
|
|
|
|
return '{ ' + parts.join(', ') + ' }';
|
2011-04-30 18:29:10 -04:00
|
|
|
},
|
|
|
|
|
2012-12-27 12:38:55 -05:00
|
|
|
// Mess with indentation in order to get more line-space below...
|
|
|
|
statics: {
|
|
|
|
getValues: function(segment1, segment2) {
|
|
|
|
var p1 = segment1._point,
|
|
|
|
h1 = segment1._handleOut,
|
|
|
|
h2 = segment2._handleIn,
|
|
|
|
p2 = segment2._point;
|
|
|
|
return [
|
|
|
|
p1._x, p1._y,
|
|
|
|
p1._x + h1._x, p1._y + h1._y,
|
|
|
|
p2._x + h2._x, p2._y + h2._y,
|
|
|
|
p2._x, p2._y
|
|
|
|
];
|
|
|
|
},
|
|
|
|
|
2013-06-27 20:12:35 -04:00
|
|
|
evaluate: function(v, t, type) {
|
|
|
|
var p1x = v[0], p1y = v[1],
|
2012-12-27 12:38:55 -05:00
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7],
|
|
|
|
x, y;
|
|
|
|
|
|
|
|
// Handle special case at beginning / end of curve
|
2013-04-20 20:26:51 -04:00
|
|
|
if (type === 0 && (t === 0 || t === 1)) {
|
|
|
|
x = t === 0 ? p1x : p2x;
|
|
|
|
y = t === 0 ? p1y : p2y;
|
2012-12-27 12:38:55 -05:00
|
|
|
} else {
|
|
|
|
// Calculate the polynomial coefficients.
|
|
|
|
var cx = 3 * (c1x - p1x),
|
|
|
|
bx = 3 * (c2x - c1x) - cx,
|
|
|
|
ax = p2x - p1x - cx - bx,
|
|
|
|
|
|
|
|
cy = 3 * (c1y - p1y),
|
|
|
|
by = 3 * (c2y - c1y) - cy,
|
|
|
|
ay = p2y - p1y - cy - by;
|
2013-06-18 22:00:05 -04:00
|
|
|
if (type === 0) {
|
2012-12-27 12:38:55 -05:00
|
|
|
// Calculate the curve point at parameter value t
|
|
|
|
x = ((ax * t + bx) * t + cx) * t + p1x;
|
|
|
|
y = ((ay * t + by) * t + cy) * t + p1y;
|
2013-06-18 22:00:05 -04:00
|
|
|
} else {
|
|
|
|
// 1: tangent, 1st derivative
|
|
|
|
// 2: normal, 1st derivative
|
|
|
|
// 3: curvature, 1st derivative & 2nd derivative
|
2013-04-20 20:40:19 -04:00
|
|
|
// Prevent tangents and normals of length 0:
|
|
|
|
// http://stackoverflow.com/questions/10506868/
|
|
|
|
var tMin = /*#=*/ Numerical.TOLERANCE;
|
|
|
|
if (t < tMin && c1x == p1x && c1y == p1y
|
|
|
|
|| t > 1 - tMin && c2x == p2x && c2y == p2y) {
|
|
|
|
x = c2x - c1x;
|
|
|
|
y = c2y - c1y;
|
|
|
|
} else {
|
|
|
|
// Simply use the derivation of the bezier function for both
|
|
|
|
// the x and y coordinates:
|
|
|
|
x = (3 * ax * t + 2 * bx) * t + cx;
|
|
|
|
y = (3 * ay * t + 2 * by) * t + cy;
|
|
|
|
}
|
2013-06-18 22:00:05 -04:00
|
|
|
if (type === 3) {
|
|
|
|
// Calculate 2nd derivative, and curvature from there:
|
|
|
|
// http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
|
|
|
|
// k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
|
|
|
|
var x2 = 6 * ax * t + 2 * bx,
|
|
|
|
y2 = 6 * ay * t + 2 * by;
|
|
|
|
return (x * y2 - y * x2) / Math.pow(x * x + y * y, 3 / 2);
|
|
|
|
}
|
2011-06-05 07:37:43 -04:00
|
|
|
}
|
2012-12-27 12:38:55 -05:00
|
|
|
}
|
|
|
|
// The normal is simply the rotated tangent:
|
|
|
|
return type == 2 ? new Point(y, -x) : new Point(x, y);
|
|
|
|
},
|
|
|
|
|
|
|
|
subdivide: function(v, t) {
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7];
|
|
|
|
if (t === undefined)
|
|
|
|
t = 0.5;
|
|
|
|
// Triangle computation, with loops unrolled.
|
|
|
|
var u = 1 - t,
|
|
|
|
// Interpolate from 4 to 3 points
|
|
|
|
p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y,
|
|
|
|
p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y,
|
|
|
|
p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y,
|
|
|
|
// Interpolate from 3 to 2 points
|
|
|
|
p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y,
|
|
|
|
p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y,
|
|
|
|
// Interpolate from 2 points to 1 point
|
|
|
|
p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y;
|
|
|
|
// We now have all the values we need to build the subcurves:
|
|
|
|
return [
|
|
|
|
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
|
|
|
|
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
|
|
|
|
];
|
|
|
|
},
|
|
|
|
|
|
|
|
// Converts from the point coordinates (p1, c1, c2, p2) for one axis to
|
|
|
|
// the polynomial coefficients and solves the polynomial for val
|
2013-10-18 08:22:59 -04:00
|
|
|
solveCubic: function (v, coord, val, roots, min, max) {
|
2012-12-27 12:38:55 -05:00
|
|
|
var p1 = v[coord],
|
|
|
|
c1 = v[coord + 2],
|
|
|
|
c2 = v[coord + 4],
|
|
|
|
p2 = v[coord + 6],
|
|
|
|
c = 3 * (c1 - p1),
|
|
|
|
b = 3 * (c2 - c1) - c,
|
|
|
|
a = p2 - p1 - c - b;
|
2013-10-18 08:22:59 -04:00
|
|
|
return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max);
|
2012-12-27 12:38:55 -05:00
|
|
|
},
|
|
|
|
|
2012-12-27 14:09:21 -05:00
|
|
|
getParameterOf: function(v, x, y) {
|
2012-12-27 12:38:55 -05:00
|
|
|
// Handle beginnings and end seperately, as they are not detected
|
|
|
|
// sometimes.
|
|
|
|
if (Math.abs(v[0] - x) < /*#=*/ Numerical.TOLERANCE
|
|
|
|
&& Math.abs(v[1] - y) < /*#=*/ Numerical.TOLERANCE)
|
|
|
|
return 0;
|
|
|
|
if (Math.abs(v[6] - x) < /*#=*/ Numerical.TOLERANCE
|
|
|
|
&& Math.abs(v[7] - y) < /*#=*/ Numerical.TOLERANCE)
|
|
|
|
return 1;
|
|
|
|
var txs = [],
|
|
|
|
tys = [],
|
|
|
|
sx = Curve.solveCubic(v, 0, x, txs),
|
|
|
|
sy = Curve.solveCubic(v, 1, y, tys),
|
|
|
|
tx, ty;
|
|
|
|
// sx, sy == -1 means infinite solutions:
|
|
|
|
// Loop through all solutions for x and match with solutions for y,
|
|
|
|
// to see if we either have a matching pair, or infinite solutions
|
|
|
|
// for one or the other.
|
|
|
|
for (var cx = 0; sx == -1 || cx < sx;) {
|
|
|
|
if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) {
|
|
|
|
for (var cy = 0; sy == -1 || cy < sy;) {
|
|
|
|
if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) {
|
|
|
|
// Handle infinite solutions by assigning root of
|
|
|
|
// the other polynomial
|
|
|
|
if (sx == -1) tx = ty;
|
|
|
|
else if (sy == -1) ty = tx;
|
|
|
|
// Use average if we're within tolerance
|
|
|
|
if (Math.abs(tx - ty) < /*#=*/ Numerical.TOLERANCE)
|
|
|
|
return (tx + ty) * 0.5;
|
2011-07-06 17:15:32 -04:00
|
|
|
}
|
|
|
|
}
|
2012-12-27 12:38:55 -05:00
|
|
|
// Avoid endless loops here: If sx is infinite and there was
|
|
|
|
// no fitting ty, there's no solution for this bezier
|
|
|
|
if (sx == -1)
|
|
|
|
break;
|
2011-07-06 17:15:32 -04:00
|
|
|
}
|
2012-12-27 12:38:55 -05:00
|
|
|
}
|
|
|
|
return null;
|
|
|
|
},
|
|
|
|
|
|
|
|
// TODO: Find better name
|
|
|
|
getPart: function(v, from, to) {
|
|
|
|
if (from > 0)
|
|
|
|
v = Curve.subdivide(v, from)[1]; // [1] right
|
|
|
|
// Interpolate the parameter at 'to' in the new curve and
|
|
|
|
// cut there.
|
|
|
|
if (to < 1)
|
|
|
|
v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left
|
|
|
|
return v;
|
|
|
|
},
|
|
|
|
|
2013-04-26 17:31:42 -04:00
|
|
|
isLinear: function(v) {
|
2013-10-17 14:19:34 -04:00
|
|
|
var isZero = Numerical.isZero;
|
|
|
|
return isZero(v[0] - v[2]) && isZero(v[1] - v[3])
|
|
|
|
&& isZero(v[4] - v[6]) && isZero(v[5] - v[7]);
|
2013-04-26 17:31:42 -04:00
|
|
|
},
|
|
|
|
|
2012-12-27 14:13:45 -05:00
|
|
|
isFlatEnough: function(v, tolerance) {
|
2013-01-20 17:28:02 -05:00
|
|
|
// Thanks to Kaspar Fischer and Roger Willcocks for the following:
|
2012-12-27 12:38:55 -05:00
|
|
|
// http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7],
|
|
|
|
ux = 3 * c1x - 2 * p1x - p2x,
|
|
|
|
uy = 3 * c1y - 2 * p1y - p2y,
|
|
|
|
vx = 3 * c2x - 2 * p2x - p1x,
|
|
|
|
vy = 3 * c2y - 2 * p2y - p1y;
|
2012-12-27 14:13:45 -05:00
|
|
|
return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy)
|
2013-05-04 00:00:37 -04:00
|
|
|
< 10 * tolerance * tolerance;
|
2012-12-27 12:38:55 -05:00
|
|
|
},
|
|
|
|
|
2013-06-14 02:16:44 -04:00
|
|
|
getArea: function(v) {
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7];
|
|
|
|
// http://objectmix.com/graphics/133553-area-closed-bezier-curve.html
|
|
|
|
return ( 3.0 * c1y * p1x - 1.5 * c1y * c2x
|
|
|
|
- 1.5 * c1y * p2x - 3.0 * p1y * c1x
|
|
|
|
- 1.5 * p1y * c2x - 0.5 * p1y * p2x
|
|
|
|
+ 1.5 * c2y * p1x + 1.5 * c2y * c1x
|
|
|
|
- 3.0 * c2y * p2x + 0.5 * p2y * p1x
|
|
|
|
+ 1.5 * p2y * c1x + 3.0 * p2y * c2x) / 10;
|
|
|
|
},
|
|
|
|
|
2012-12-27 12:38:55 -05:00
|
|
|
getBounds: function(v) {
|
2012-12-30 10:07:20 -05:00
|
|
|
var min = v.slice(0, 2), // Start with values of point1
|
2013-04-06 12:39:17 -04:00
|
|
|
max = min.slice(), // clone
|
2013-04-09 10:55:09 -04:00
|
|
|
roots = [0, 0];
|
2012-12-27 15:08:03 -05:00
|
|
|
for (var i = 0; i < 2; i++)
|
2012-12-27 12:38:55 -05:00
|
|
|
Curve._addBounds(v[i], v[i + 2], v[i + 4], v[i + 6],
|
|
|
|
i, 0, min, max, roots);
|
2013-05-28 02:57:31 -04:00
|
|
|
return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]);
|
2012-12-27 12:38:55 -05:00
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Private helper for both Curve.getBounds() and Path.getBounds(), which
|
|
|
|
* finds the 0-crossings of the derivative of a bezier curve polynomial, to
|
2013-05-01 07:29:02 -04:00
|
|
|
* determine potential extremas when finding the bounds of a curve.
|
2012-12-27 12:38:55 -05:00
|
|
|
* Note: padding is only used for Path.getBounds().
|
|
|
|
*/
|
|
|
|
_addBounds: function(v0, v1, v2, v3, coord, padding, min, max, roots) {
|
|
|
|
// Code ported and further optimised from:
|
|
|
|
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
|
|
|
|
function add(value, padding) {
|
|
|
|
var left = value - padding,
|
|
|
|
right = value + padding;
|
|
|
|
if (left < min[coord])
|
|
|
|
min[coord] = left;
|
|
|
|
if (right > max[coord])
|
|
|
|
max[coord] = right;
|
|
|
|
}
|
|
|
|
// Calculate derivative of our bezier polynomial, divided by 3.
|
|
|
|
// Doing so allows for simpler calculations of a, b, c and leads to the
|
|
|
|
// same quadratic roots.
|
|
|
|
var a = 3 * (v1 - v2) - v0 + v3,
|
|
|
|
b = 2 * (v0 + v2) - 4 * v1,
|
2013-02-08 19:12:57 -05:00
|
|
|
c = v1 - v0,
|
2013-04-20 22:58:42 -04:00
|
|
|
count = Numerical.solveQuadratic(a, b, c, roots),
|
2012-12-27 12:38:55 -05:00
|
|
|
// Add some tolerance for good roots, as t = 0 / 1 are added
|
|
|
|
// seperately anyhow, and we don't want joins to be added with
|
|
|
|
// radiuses in getStrokeBounds()
|
|
|
|
tMin = /*#=*/ Numerical.TOLERANCE,
|
|
|
|
tMax = 1 - tMin;
|
|
|
|
// Only add strokeWidth to bounds for points which lie within 0 < t < 1
|
|
|
|
// The corner cases for cap and join are handled in getStrokeBounds()
|
|
|
|
add(v3, 0);
|
2013-05-25 14:23:59 -04:00
|
|
|
for (var i = 0; i < count; i++) {
|
|
|
|
var t = roots[i],
|
2012-12-27 12:38:55 -05:00
|
|
|
u = 1 - t;
|
|
|
|
// Test for good roots and only add to bounds if good.
|
|
|
|
if (tMin < t && t < tMax)
|
|
|
|
// Calculate bezier polynomial at t.
|
|
|
|
add(u * u * u * v0
|
|
|
|
+ 3 * u * u * t * v1
|
|
|
|
+ 3 * u * t * t * v2
|
|
|
|
+ t * t * t * v3,
|
|
|
|
padding);
|
2011-03-06 07:52:13 -05:00
|
|
|
}
|
2013-10-18 08:22:59 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
_getWinding: function(v, x, y, roots1, roots2) {
|
|
|
|
// Implementation of the crossing number algorithm:
|
|
|
|
// http://en.wikipedia.org/wiki/Point_in_polygon
|
|
|
|
// Solve the y-axis cubic polynomial for y and count all solutions
|
|
|
|
// to the right of x as crossings.
|
2013-10-19 19:24:07 -04:00
|
|
|
var tolerance = /*#=*/ Numerical.TOLERANCE,
|
|
|
|
abs = Math.abs;
|
|
|
|
|
|
|
|
// Looks at the curve's start and end y coordinates to determine
|
|
|
|
// orientation. This only makes sense for curves with clear orientation,
|
|
|
|
// which is why we need to split them at y extrema, see below.
|
|
|
|
// Returns 0 if the curve is outside the boundaries and is not to be
|
|
|
|
// considered.
|
|
|
|
function getOrientation(v) {
|
2013-10-18 08:22:59 -04:00
|
|
|
var y0 = v[1],
|
|
|
|
y1 = v[7],
|
|
|
|
dir = 1;
|
|
|
|
if (y0 > y1) {
|
|
|
|
var tmp = y0;
|
|
|
|
y0 = y1;
|
|
|
|
y1 = tmp;
|
|
|
|
dir = -1;
|
|
|
|
}
|
|
|
|
if (y < y0 || y > y1)
|
2013-10-19 19:24:07 -04:00
|
|
|
dir = 0;
|
|
|
|
return dir;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Curve.isLinear(v)) {
|
|
|
|
// Special simplified case for handling lines.
|
|
|
|
var dir = getOrientation(v);
|
|
|
|
if (!dir)
|
|
|
|
return 0;
|
2013-10-18 08:22:59 -04:00
|
|
|
var cross = (v[6] - v[0]) * (y - v[1]) - (v[7] - v[1]) * (x - v[0]);
|
2013-10-18 09:15:54 -04:00
|
|
|
return (cross < -tolerance ? -1 : 1) == dir ? 0 : dir;
|
2013-10-18 08:22:59 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
// Handle bezier curves. We need to chop them into smaller curves with
|
|
|
|
// defined orientation, by solving the derrivative curve for Y extrema.
|
|
|
|
var y0 = v[1],
|
|
|
|
y1 = v[3],
|
|
|
|
y2 = v[5],
|
|
|
|
y3 = v[7];
|
2013-10-19 19:24:07 -04:00
|
|
|
// Split the curve at y extrema, to get bezier curves with clear
|
|
|
|
// orientation: Calculate the derivative and find its roots.
|
2013-10-18 08:22:59 -04:00
|
|
|
var a = 3 * (y1 - y2) - y0 + y3,
|
|
|
|
b = 2 * (y0 + y2) - 4 * y1,
|
2013-10-19 19:24:07 -04:00
|
|
|
c = y1 - y0;
|
|
|
|
// Keep then range to 0 .. 1 (excluding) in the search for y extrema
|
|
|
|
var count = Numerical.solveQuadratic(a, b, c, roots1, tolerance,
|
|
|
|
1 - tolerance),
|
2013-10-19 19:57:11 -04:00
|
|
|
part, // The part of the curve that's chopped off.
|
|
|
|
rest = v, // The part that's left to be chopped.
|
2013-10-19 19:24:07 -04:00
|
|
|
t1 = roots1[0], // The first root
|
|
|
|
winding = 0;
|
2013-10-18 08:22:59 -04:00
|
|
|
for (var i = 0; i <= count; i++) {
|
|
|
|
if (i === count) {
|
2013-10-19 19:57:11 -04:00
|
|
|
part = rest;
|
2013-10-18 08:22:59 -04:00
|
|
|
} else {
|
2013-10-19 18:59:12 -04:00
|
|
|
// Divide the curve at t1.
|
2013-10-19 19:57:11 -04:00
|
|
|
var curves = Curve.subdivide(rest, t1);
|
|
|
|
part = curves[0];
|
|
|
|
rest = curves[1];
|
2013-10-19 18:59:12 -04:00
|
|
|
t1 = roots1[i];
|
2013-10-18 08:22:59 -04:00
|
|
|
// TODO: Watch for divide by 0
|
2013-10-19 18:59:12 -04:00
|
|
|
// Now renormalize t1 to the range of the next iteration.
|
|
|
|
t1 = (roots1[i + 1] - t1) / (1 - t1);
|
2013-10-18 08:22:59 -04:00
|
|
|
}
|
|
|
|
// Make sure that the connecting y extrema are flat
|
|
|
|
if (i > 0)
|
2013-10-19 19:57:11 -04:00
|
|
|
part[3] = part[1]; // curve2.handle1.y = curve2.point1.y;
|
2013-10-18 08:22:59 -04:00
|
|
|
if (i < count)
|
2013-10-19 19:57:11 -04:00
|
|
|
part[5] = rest[1]; // curve1.handle2.y = curve2.point1.y;
|
|
|
|
var dir = getOrientation(part);
|
2013-10-19 19:24:07 -04:00
|
|
|
if (!dir)
|
2013-10-18 08:22:59 -04:00
|
|
|
continue;
|
|
|
|
// Adjust start and end range depending on if curve was flipped.
|
|
|
|
// In normal orientation we exclude the end point since it's also
|
|
|
|
// the start point of the next curve. If flipped, we have to exclude
|
|
|
|
// the end point instead.
|
2013-10-19 19:24:07 -04:00
|
|
|
var t2,
|
2013-10-19 18:59:12 -04:00
|
|
|
px;
|
2013-10-19 19:24:07 -04:00
|
|
|
// Since we've split at y extrema, there can only be 0, 1, or
|
|
|
|
// infinite solutions now.
|
2013-10-19 19:57:11 -04:00
|
|
|
if (Curve.solveCubic(part, 1, y, roots2, -tolerance, 1 + -tolerance)
|
2013-10-19 19:24:07 -04:00
|
|
|
=== 1) {
|
2013-10-19 18:59:12 -04:00
|
|
|
t2 = roots2[0];
|
2013-10-19 19:57:11 -04:00
|
|
|
px = Curve.evaluate(part, t2, 0).x;
|
2013-10-18 08:22:59 -04:00
|
|
|
} else {
|
2013-10-19 19:57:11 -04:00
|
|
|
var mid = (part[1] + part[7]) / 2;
|
2013-10-19 19:24:07 -04:00
|
|
|
// Pick t2 based on the direction of the curve. If y < mid,
|
|
|
|
// choose the beginning (which is the end of a curve with
|
|
|
|
// negative orientation, as we're not actually flipping curves).
|
|
|
|
t2 = y < mid && dir > 0 ? 0 : 1;
|
|
|
|
// Filter out the end point, as it'll be the start point of the
|
|
|
|
// next curve.
|
2013-10-19 19:57:11 -04:00
|
|
|
if (t2 === 1 && y == part[7])
|
2013-10-18 08:22:59 -04:00
|
|
|
continue;
|
2013-10-19 19:57:11 -04:00
|
|
|
px = t2 === 0 ? part[0] : part[6];
|
2013-10-18 08:22:59 -04:00
|
|
|
}
|
2013-10-18 09:15:54 -04:00
|
|
|
// See if we're touching a horizontal stationary point by looking at
|
|
|
|
// the tanget's y coordinate.
|
2013-10-19 19:57:11 -04:00
|
|
|
var flat = abs(Curve.evaluate(part, t2, 1).y) < tolerance;
|
2013-10-18 08:22:59 -04:00
|
|
|
// Calculate compare tolerance based on curve orientation (dir), to
|
|
|
|
// add a bit of tolerance when considering points lying on the curve
|
|
|
|
// as inside. But if we're touching a horizontal stationary point,
|
|
|
|
// set compare tolerance to -tolerance, since we don't want to step
|
|
|
|
// side-ways in tolerance based on orientation. This is needed e.g.
|
|
|
|
// when touching the bottom tip of a circle.
|
|
|
|
// Pass 1 for Curve.evaluate() type to calculate tangent
|
2013-10-19 19:41:31 -04:00
|
|
|
if (x >= px + (flat ? -tolerance : tolerance * dir)
|
|
|
|
// When touching a stationary point, only count it if we're
|
|
|
|
// actuall on it.
|
2013-10-19 19:57:11 -04:00
|
|
|
&& !(flat && (abs(t2) < tolerance && x != part[0]
|
|
|
|
|| abs(t2 - 1) < tolerance && x != part[6]))) {
|
2013-10-18 08:22:59 -04:00
|
|
|
// If this is a horizontal stationary point, and we're at the
|
2013-10-19 19:24:07 -04:00
|
|
|
// end of the curve (or at the beginning of a curve with
|
|
|
|
// negative direction, as we're not actually flipping them),
|
|
|
|
// flip dir, as the curve is about to change orientation.
|
|
|
|
winding += flat && abs(t2 - (dir > 0 ? 1 : 0)) < tolerance
|
|
|
|
? -dir : dir;
|
2013-10-18 08:22:59 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return winding;
|
2011-03-06 07:52:13 -05:00
|
|
|
}
|
2013-01-28 19:32:04 -05:00
|
|
|
}}, Base.each(['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'],
|
|
|
|
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
|
|
|
|
// determine the bounds of Curve objects with defined segment1 and segment2
|
|
|
|
// values Curve.getBounds() can be used directly on curve arrays, without
|
|
|
|
// the need to create a Curve object first, as required by the code that
|
|
|
|
// finds path interesections.
|
|
|
|
function(name) {
|
|
|
|
this[name] = function() {
|
|
|
|
if (!this._bounds)
|
|
|
|
this._bounds = {};
|
|
|
|
var bounds = this._bounds[name];
|
|
|
|
if (!bounds) {
|
|
|
|
// Calculate the curve bounds by passing a segment list for the
|
|
|
|
// curve to the static Path.get*Boudns methods.
|
2013-06-12 23:12:08 -04:00
|
|
|
bounds = this._bounds[name] = Path[name]([this._segment1,
|
|
|
|
this._segment2], false, this._path.getStyle());
|
2013-01-28 19:32:04 -05:00
|
|
|
}
|
|
|
|
return bounds.clone();
|
|
|
|
};
|
|
|
|
},
|
|
|
|
/** @lends Curve# */{
|
|
|
|
/**
|
|
|
|
* The bounding rectangle of the curve excluding stroke width.
|
|
|
|
*
|
|
|
|
* @name Curve#getBounds
|
|
|
|
* @type Rectangle
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The bounding rectangle of the curve including stroke width.
|
|
|
|
*
|
|
|
|
* @name Curve#getStrokeBounds
|
|
|
|
* @type Rectangle
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The bounding rectangle of the curve including handles.
|
|
|
|
*
|
|
|
|
* @name Curve#getHandleBounds
|
|
|
|
* @type Rectangle
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The rough bounding rectangle of the curve that is shure to include all of
|
|
|
|
* the drawing, including stroke width.
|
|
|
|
*
|
|
|
|
* @name Curve#getRoughBounds
|
|
|
|
* @type Rectangle
|
|
|
|
* @bean
|
|
|
|
* @ignore
|
|
|
|
*/
|
2013-06-27 20:13:00 -04:00
|
|
|
}), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'],
|
2013-01-28 19:30:28 -05:00
|
|
|
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
|
|
|
|
// determine the bounds of Curve objects with defined segment1 and segment2
|
|
|
|
// values Curve.getBounds() can be used directly on curve arrays, without
|
|
|
|
// the need to create a Curve object first, as required by the code that
|
|
|
|
// finds path interesections.
|
|
|
|
function(name, index) {
|
|
|
|
this[name + 'At'] = function(offset, isParameter) {
|
2013-06-27 20:12:35 -04:00
|
|
|
var values = this.getValues();
|
|
|
|
return Curve.evaluate(values, isParameter
|
|
|
|
? offset : Curve.getParameterAt(values, offset, 0), index);
|
2013-01-28 19:30:28 -05:00
|
|
|
};
|
|
|
|
// Deprecated and undocumented, but keep around for now.
|
|
|
|
// TODO: Remove once enough time has passed (28.01.2013)
|
|
|
|
this[name] = function(parameter) {
|
2013-06-27 20:12:35 -04:00
|
|
|
return Curve.evaluate(this.getValues(), parameter, index);
|
2013-01-28 19:30:28 -05:00
|
|
|
};
|
|
|
|
},
|
|
|
|
/** @lends Curve# */{
|
|
|
|
/**
|
2013-01-28 19:47:45 -05:00
|
|
|
* Calculates the curve time parameter of the specified offset on the path,
|
|
|
|
* relative to the provided start parameter. If offset is a negative value,
|
2013-05-01 07:29:02 -04:00
|
|
|
* the parameter is searched to the left of the start parameter. If no start
|
2013-01-28 19:47:45 -05:00
|
|
|
* parameter is provided, a default of {@code 0} for positive values of
|
|
|
|
* {@code offset} and {@code 1} for negative values of {@code offset}.
|
2013-01-28 19:30:28 -05:00
|
|
|
* @param {Number} offset
|
|
|
|
* @param {Number} [start]
|
2013-01-28 19:47:45 -05:00
|
|
|
* @return {Number} the curve time parameter at the specified offset.
|
2013-01-28 19:30:28 -05:00
|
|
|
*/
|
|
|
|
getParameterAt: function(offset, start) {
|
|
|
|
return Curve.getParameterAt(this.getValues(), offset,
|
|
|
|
start !== undefined ? start : offset < 0 ? 1 : 0);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
2013-01-28 19:47:45 -05:00
|
|
|
* Returns the curve time parameter of the specified point if it lies on the
|
|
|
|
* curve, {@code null} otherwise.
|
|
|
|
* @param {Point} point the point on the curve.
|
|
|
|
* @return {Number} the curve time parameter of the specified point.
|
2013-01-28 19:30:28 -05:00
|
|
|
*/
|
|
|
|
getParameterOf: function(point) {
|
|
|
|
point = Point.read(arguments);
|
|
|
|
return Curve.getParameterOf(this.getValues(), point.x, point.y);
|
|
|
|
},
|
|
|
|
|
2013-01-28 19:47:45 -05:00
|
|
|
/**
|
|
|
|
* Calculates the curve location at the specified offset or curve time
|
|
|
|
* parameter.
|
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
2013-05-01 07:29:02 -04:00
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
2013-01-28 19:47:45 -05:00
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {CurveLocation} the curve location at the specified the offset.
|
|
|
|
*/
|
2013-01-28 19:30:28 -05:00
|
|
|
getLocationAt: function(offset, isParameter) {
|
|
|
|
if (!isParameter)
|
|
|
|
offset = this.getParameterAt(offset);
|
|
|
|
return new CurveLocation(this, offset);
|
|
|
|
},
|
|
|
|
|
2013-01-28 19:47:45 -05:00
|
|
|
/**
|
|
|
|
* Returns the curve location of the specified point if it lies on the
|
|
|
|
* curve, {@code null} otherwise.
|
|
|
|
* @param {Point} point the point on the curve.
|
|
|
|
* @return {CurveLocation} the curve location of the specified point.
|
|
|
|
*/
|
2013-01-28 19:30:28 -05:00
|
|
|
getLocationOf: function(point) {
|
2013-06-24 13:15:54 -04:00
|
|
|
// We need to use point to avoid minification issues and prevent method
|
|
|
|
// from turning into a bean (by removal of the point argument).
|
|
|
|
point = Point.read(arguments);
|
|
|
|
var t = this.getParameterOf(point);
|
2013-01-28 19:30:28 -05:00
|
|
|
return t != null ? new CurveLocation(this, t) : null;
|
2013-05-06 02:05:57 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
getNearestLocation: function(point) {
|
2013-05-07 03:07:18 -04:00
|
|
|
point = Point.read(arguments);
|
2013-05-06 02:05:57 -04:00
|
|
|
var values = this.getValues(),
|
2013-06-15 06:12:29 -04:00
|
|
|
count = 100,
|
2013-05-06 02:05:57 -04:00
|
|
|
tolerance = Numerical.TOLERANCE,
|
|
|
|
minDist = Infinity,
|
2013-06-24 13:15:54 -04:00
|
|
|
minT = 0;
|
2013-05-06 02:05:57 -04:00
|
|
|
|
2013-05-07 03:07:18 -04:00
|
|
|
function refine(t) {
|
2013-05-06 02:05:57 -04:00
|
|
|
if (t >= 0 && t <= 1) {
|
|
|
|
var dist = point.getDistance(
|
2013-06-27 20:12:35 -04:00
|
|
|
Curve.evaluate(values, t, 0), true);
|
2013-05-06 02:05:57 -04:00
|
|
|
if (dist < minDist) {
|
|
|
|
minDist = dist;
|
2013-05-07 03:07:18 -04:00
|
|
|
minT = t;
|
2013-05-06 02:05:57 -04:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-06-15 06:12:29 -04:00
|
|
|
for (var i = 0; i <= count; i++)
|
|
|
|
refine(i / count);
|
2013-05-07 03:07:18 -04:00
|
|
|
|
2013-05-06 02:05:57 -04:00
|
|
|
// Now iteratively refine solution until we reach desired precision.
|
2013-06-15 06:12:29 -04:00
|
|
|
var step = 1 / (count * 2);
|
2013-05-07 03:07:18 -04:00
|
|
|
while (step > tolerance) {
|
|
|
|
if (!refine(minT - step) && !refine(minT + step))
|
|
|
|
step /= 2;
|
2013-05-06 02:05:57 -04:00
|
|
|
}
|
2013-06-27 20:12:35 -04:00
|
|
|
var pt = Curve.evaluate(values, minT, 0);
|
2013-06-13 18:53:28 -04:00
|
|
|
return new CurveLocation(this, minT, pt, null, null, null,
|
2013-06-09 21:37:08 -04:00
|
|
|
point.getDistance(pt));
|
2013-05-06 02:05:57 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
getNearestPoint: function(point) {
|
2013-06-24 13:15:54 -04:00
|
|
|
// We need to use point to avoid minification issues and prevent method
|
|
|
|
// from turning into a bean (by removal of the point argument).
|
|
|
|
point = Point.read(arguments);
|
|
|
|
return this.getNearestLocation(point).getPoint();
|
2013-01-28 19:30:28 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2013-01-28 19:47:45 -05:00
|
|
|
* Returns the point on the curve at the specified offset.
|
2013-01-28 19:30:28 -05:00
|
|
|
*
|
|
|
|
* @name Curve#getPointAt
|
|
|
|
* @function
|
2013-01-28 19:47:45 -05:00
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
2013-05-01 07:29:02 -04:00
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
2013-01-28 19:47:45 -05:00
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Point} the point on the curve at the specified offset.
|
2013-01-28 19:30:28 -05:00
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
2013-04-20 20:26:51 -04:00
|
|
|
* Returns the tangent vector of the curve at the specified position.
|
2013-01-28 19:30:28 -05:00
|
|
|
*
|
|
|
|
* @name Curve#getTangentAt
|
|
|
|
* @function
|
2013-01-28 19:47:45 -05:00
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
2013-05-01 07:29:02 -04:00
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
2013-01-28 19:47:45 -05:00
|
|
|
* is a curve time parameter.
|
2013-04-20 20:26:51 -04:00
|
|
|
* @return {Point} the tangent of the curve at the specified offset.
|
2013-01-28 19:30:28 -05:00
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
2013-04-20 20:26:51 -04:00
|
|
|
* Returns the normal vector of the curve at the specified position.
|
2013-01-28 19:30:28 -05:00
|
|
|
*
|
|
|
|
* @name Curve#getNormalAt
|
|
|
|
* @function
|
2013-01-28 19:47:45 -05:00
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
2013-05-01 07:29:02 -04:00
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
2013-01-28 19:47:45 -05:00
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Point} the normal of the curve at the specified offset.
|
2013-04-20 20:26:51 -04:00
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the curvature vector of the curve at the specified position.
|
2013-06-18 22:00:05 -04:00
|
|
|
* Curvatures indicate how sharply a curve changes direction. A straight
|
|
|
|
* line has zero curvature where as a circle has a constant curvature.
|
2013-04-20 20:26:51 -04:00
|
|
|
*
|
|
|
|
* @name Curve#getCurvatureAt
|
|
|
|
* @function
|
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
2013-05-01 07:29:02 -04:00
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
2013-04-20 20:26:51 -04:00
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Point} the curvature of the curve at the specified offset.
|
2013-01-28 19:30:28 -05:00
|
|
|
*/
|
2013-05-06 02:14:49 -04:00
|
|
|
}),
|
|
|
|
new function() { // Scope for methods that require numerical integration
|
|
|
|
|
|
|
|
function getLengthIntegrand(v) {
|
|
|
|
// Calculate the coefficients of a Bezier derivative.
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7],
|
|
|
|
|
|
|
|
ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
|
|
|
|
bx = 6 * (p1x + c2x) - 12 * c1x,
|
|
|
|
cx = 3 * (c1x - p1x),
|
|
|
|
|
|
|
|
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
|
|
|
|
by = 6 * (p1y + c2y) - 12 * c1y,
|
|
|
|
cy = 3 * (c1y - p1y);
|
|
|
|
|
|
|
|
return function(t) {
|
|
|
|
// Calculate quadratic equations of derivatives for x and y
|
|
|
|
var dx = (ax * t + bx) * t + cx,
|
|
|
|
dy = (ay * t + by) * t + cy;
|
|
|
|
return Math.sqrt(dx * dx + dy * dy);
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
// Amount of integral evaluations for the interval 0 <= a < b <= 1
|
|
|
|
function getIterations(a, b) {
|
|
|
|
// Guess required precision based and size of range...
|
|
|
|
// TODO: There should be much better educated guesses for
|
|
|
|
// this. Also, what does this depend on? Required precision?
|
|
|
|
return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32)));
|
|
|
|
}
|
|
|
|
|
|
|
|
return {
|
|
|
|
statics: true,
|
|
|
|
|
|
|
|
getLength: function(v, a, b) {
|
|
|
|
if (a === undefined)
|
|
|
|
a = 0;
|
|
|
|
if (b === undefined)
|
|
|
|
b = 1;
|
2013-09-23 11:13:32 -04:00
|
|
|
var isZero = Numerical.isZero;
|
2013-06-13 18:53:28 -04:00
|
|
|
// See if the curve is linear by checking p1 == c1 and p2 == c2
|
2013-09-23 11:13:32 -04:00
|
|
|
if (isZero(v[0] - v[2]) && isZero(v[1] - v[3])
|
|
|
|
&& isZero(v[6] - v[4]) && isZero(v[7] - v[5])) {
|
2013-05-06 02:14:49 -04:00
|
|
|
// Straight line
|
|
|
|
var dx = v[6] - v[0], // p2x - p1x
|
|
|
|
dy = v[7] - v[1]; // p2y - p1y
|
|
|
|
return (b - a) * Math.sqrt(dx * dx + dy * dy);
|
|
|
|
}
|
|
|
|
var ds = getLengthIntegrand(v);
|
|
|
|
return Numerical.integrate(ds, a, b, getIterations(a, b));
|
|
|
|
},
|
|
|
|
|
|
|
|
getParameterAt: function(v, offset, start) {
|
|
|
|
if (offset === 0)
|
|
|
|
return start;
|
|
|
|
// See if we're going forward or backward, and handle cases
|
|
|
|
// differently
|
|
|
|
var forward = offset > 0,
|
|
|
|
a = forward ? start : 0,
|
|
|
|
b = forward ? 1 : start,
|
|
|
|
offset = Math.abs(offset),
|
|
|
|
// Use integrand to calculate both range length and part
|
|
|
|
// lengths in f(t) below.
|
|
|
|
ds = getLengthIntegrand(v),
|
|
|
|
// Get length of total range
|
|
|
|
rangeLength = Numerical.integrate(ds, a, b,
|
|
|
|
getIterations(a, b));
|
|
|
|
if (offset >= rangeLength)
|
|
|
|
return forward ? b : a;
|
|
|
|
// Use offset / rangeLength for an initial guess for t, to
|
|
|
|
// bring us closer:
|
|
|
|
var guess = offset / rangeLength,
|
|
|
|
length = 0;
|
|
|
|
// Iteratively calculate curve range lengths, and add them up,
|
|
|
|
// using integration precision depending on the size of the
|
|
|
|
// range. This is much faster and also more precise than not
|
|
|
|
// modifing start and calculating total length each time.
|
|
|
|
function f(t) {
|
|
|
|
var count = getIterations(start, t);
|
|
|
|
length += start < t
|
|
|
|
? Numerical.integrate(ds, start, t, count)
|
|
|
|
: -Numerical.integrate(ds, t, start, count);
|
|
|
|
start = t;
|
|
|
|
return length - offset;
|
|
|
|
}
|
|
|
|
return Numerical.findRoot(f, ds,
|
|
|
|
forward ? a + guess : b - guess, // Initial guess for x
|
|
|
|
a, b, 16, /*#=*/ Numerical.TOLERANCE);
|
|
|
|
}
|
|
|
|
};
|
2013-05-26 20:59:01 -04:00
|
|
|
}, new function() { // Scope for intersection using bezier fat-line clipping
|
2013-06-13 18:53:28 -04:00
|
|
|
function addLocation(locations, curve1, t1, point1, curve2, t2, point2) {
|
2013-05-25 01:30:13 -04:00
|
|
|
// Avoid duplicates when hitting segments (closed paths too)
|
|
|
|
var first = locations[0],
|
|
|
|
last = locations[locations.length - 1];
|
2013-06-13 18:53:28 -04:00
|
|
|
if ((!first || !point1.equals(first._point))
|
|
|
|
&& (!last || !point1.equals(last._point)))
|
|
|
|
locations.push(
|
|
|
|
new CurveLocation(curve1, t1, point1, curve2, t2, point2));
|
2013-05-25 01:30:13 -04:00
|
|
|
}
|
|
|
|
|
2013-05-26 20:06:23 -04:00
|
|
|
function addCurveIntersections(v1, v2, curve1, curve2, locations,
|
2013-05-25 01:30:13 -04:00
|
|
|
range1, range2, recursion) {
|
|
|
|
/*#*/ if (options.fatline) {
|
|
|
|
// NOTE: range1 and range1 are only used for recusion
|
|
|
|
recursion = (recursion || 0) + 1;
|
|
|
|
// Avoid endless recursion.
|
|
|
|
// Perhaps we should fall back to a more expensive method after this,
|
|
|
|
// but so far endless recursion happens only when there is no real
|
|
|
|
// intersection and the infinite fatline continue to intersect with the
|
|
|
|
// other curve outside its bounds!
|
|
|
|
if (recursion > 20)
|
|
|
|
return;
|
|
|
|
// Set up the parameter ranges.
|
|
|
|
range1 = range1 || [ 0, 1 ];
|
|
|
|
range2 = range2 || [ 0, 1 ];
|
|
|
|
// Get the clipped parts from the original curve, to avoid cumulative
|
|
|
|
// errors
|
|
|
|
var part1 = Curve.getPart(v1, range1[0], range1[1]),
|
|
|
|
part2 = Curve.getPart(v2, range2[0], range2[1]),
|
|
|
|
iteration = 0;
|
|
|
|
// markCurve(part1, '#f0f', true);
|
|
|
|
// markCurve(part2, '#0ff', false);
|
|
|
|
// Loop until both parameter range converge. We have to handle the
|
|
|
|
// degenerate case seperately, where fat-line clipping can become
|
|
|
|
// numerically unstable when one of the curves has converged to a point
|
|
|
|
// and the other hasn't.
|
2013-06-13 18:53:28 -04:00
|
|
|
while (iteration++ < 20) {
|
2013-05-25 01:30:13 -04:00
|
|
|
// First we clip v2 with v1's fat-line
|
|
|
|
var range,
|
|
|
|
intersects1 = clipFatLine(part1, part2, range = range2.slice()),
|
|
|
|
intersects2 = 0;
|
|
|
|
// Stop if there are no possible intersections
|
|
|
|
if (intersects1 === 0)
|
|
|
|
break;
|
|
|
|
if (intersects1 > 0) {
|
|
|
|
// Get the clipped parts from the original v2, to avoid
|
|
|
|
// cumulative errors
|
|
|
|
range2 = range;
|
|
|
|
part2 = Curve.getPart(v2, range2[0], range2[1]);
|
|
|
|
// markCurve(part2, '#0ff', false);
|
|
|
|
// Next we clip v1 with nuv2's fat-line
|
|
|
|
intersects2 = clipFatLine(part2, part1, range = range1.slice());
|
|
|
|
// Stop if there are no possible intersections
|
|
|
|
if (intersects2 === 0)
|
|
|
|
break;
|
|
|
|
if (intersects1 > 0) {
|
|
|
|
// Get the clipped parts from the original v2, to avoid
|
|
|
|
// cumulative errors
|
|
|
|
range1 = range;
|
|
|
|
part1 = Curve.getPart(v1, range1[0], range1[1]);
|
|
|
|
}
|
|
|
|
// markCurve(part1, '#f0f', true);
|
|
|
|
}
|
|
|
|
// Get the clipped parts from the original v1
|
|
|
|
// Check if there could be multiple intersections
|
|
|
|
if (intersects1 < 0 || intersects2 < 0) {
|
|
|
|
// Subdivide the curve which has converged the least from the
|
|
|
|
// original range [0,1], which would be the curve with the
|
|
|
|
// largest parameter range after clipping
|
|
|
|
if (range1[1] - range1[0] > range2[1] - range2[0]) {
|
|
|
|
// subdivide v1 and recurse
|
|
|
|
var t = (range1[0] + range1[1]) / 2;
|
2013-05-26 20:06:23 -04:00
|
|
|
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
2013-05-25 01:30:13 -04:00
|
|
|
[ range1[0], t ], range2, recursion);
|
2013-05-26 20:06:23 -04:00
|
|
|
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
2013-05-25 01:30:13 -04:00
|
|
|
[ t, range1[1] ], range2, recursion);
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
// subdivide v2 and recurse
|
|
|
|
var t = (range2[0] + range2[1]) / 2;
|
2013-05-26 20:06:23 -04:00
|
|
|
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
2013-05-25 01:30:13 -04:00
|
|
|
range1, [ range2[0], t ], recursion);
|
2013-05-26 20:06:23 -04:00
|
|
|
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
2013-05-25 01:30:13 -04:00
|
|
|
range1, [ t, range2[1] ], recursion);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// We need to bailout of clipping and try a numerically stable
|
2013-06-13 18:53:28 -04:00
|
|
|
// method if both of the parameter ranges have converged reasonably
|
|
|
|
// well (according to Numerical.TOLERANCE).
|
|
|
|
if (Math.abs(range1[1] - range1[0]) <= /*#=*/ Numerical.TOLERANCE &&
|
|
|
|
Math.abs(range2[1] - range2[0]) <= /*#=*/ Numerical.TOLERANCE) {
|
2013-06-09 21:37:08 -04:00
|
|
|
var t1 = (range1[0] + range1[1]) / 2,
|
|
|
|
t2 = (range2[0] + range2[1]) / 2;
|
2013-06-13 18:53:28 -04:00
|
|
|
addLocation(locations,
|
2013-06-27 20:12:35 -04:00
|
|
|
curve1, t1, Curve.evaluate(v1, t1, 0),
|
|
|
|
curve2, t2, Curve.evaluate(v2, t2, 0));
|
2013-05-25 01:30:13 -04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*#*/ } else { // !options.fatline
|
|
|
|
var bounds1 = Curve.getBounds(v1),
|
|
|
|
bounds2 = Curve.getBounds(v2);
|
|
|
|
if (bounds1.touches(bounds2)) {
|
|
|
|
// See if both curves are flat enough to be treated as lines, either
|
|
|
|
// because they have no control points at all, or are "flat enough"
|
|
|
|
// If the curve was flat in a previous iteration, we don't need to
|
|
|
|
// recalculate since it does not need further subdivision then.
|
|
|
|
if ((Curve.isLinear(v1)
|
|
|
|
|| Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE))
|
|
|
|
&& (Curve.isLinear(v2)
|
|
|
|
|| Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE))) {
|
|
|
|
// See if the parametric equations of the lines interesct.
|
2013-05-26 20:10:29 -04:00
|
|
|
addLineIntersection(v1, v2, curve1, curve2, locations);
|
2013-05-25 01:30:13 -04:00
|
|
|
} else {
|
|
|
|
// Subdivide both curves, and see if they intersect.
|
|
|
|
// If one of the curves is flat already, no further subdivion
|
|
|
|
// is required.
|
|
|
|
var v1s = Curve.subdivide(v1),
|
|
|
|
v2s = Curve.subdivide(v2);
|
|
|
|
for (var i = 0; i < 2; i++)
|
|
|
|
for (var j = 0; j < 2; j++)
|
|
|
|
Curve.getIntersections(v1s[i], v2s[j], curve1, curve2,
|
|
|
|
locations);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return locations;
|
|
|
|
/*#*/ } // !options.fatline
|
|
|
|
}
|
|
|
|
|
|
|
|
/*#*/ if (options.fatline) {
|
|
|
|
/**
|
|
|
|
* Clip curve V2 with fat-line of v1
|
|
|
|
* @param {Array} v1 section of the first curve, for which we will make a
|
|
|
|
* fat-line
|
|
|
|
* @param {Array} v2 section of the second curve; we will clip this curve
|
|
|
|
* with the fat-line of v1
|
|
|
|
* @param {Array} range2 the parameter range of v2
|
|
|
|
* @return {Number} 0: no Intersection, 1: one intersection, -1: more than
|
|
|
|
* one ntersection
|
|
|
|
*/
|
|
|
|
function clipFatLine(v1, v2, range2) {
|
|
|
|
// P = first curve, Q = second curve
|
|
|
|
var p0x = v1[0], p0y = v1[1], p1x = v1[2], p1y = v1[3],
|
|
|
|
p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7],
|
|
|
|
q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3],
|
|
|
|
q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7],
|
2013-05-26 19:58:49 -04:00
|
|
|
getSignedDistance = Line.getSignedDistance,
|
2013-05-25 01:30:13 -04:00
|
|
|
// Calculate the fat-line L for P is the baseline l and two
|
|
|
|
// offsets which completely encloses the curve P.
|
|
|
|
d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0,
|
|
|
|
d2 = getSignedDistance(p0x, p0y, p3x, p3y, p2x, p2y) || 0,
|
|
|
|
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
|
|
|
|
dmin = factor * Math.min(0, d1, d2),
|
|
|
|
dmax = factor * Math.max(0, d1, d2),
|
|
|
|
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
|
|
|
|
// distance of Q from the baseline l of the fat-line, ti is equally
|
|
|
|
// spaced in [0, 1]
|
|
|
|
dq0 = getSignedDistance(p0x, p0y, p3x, p3y, q0x, q0y),
|
|
|
|
dq1 = getSignedDistance(p0x, p0y, p3x, p3y, q1x, q1y),
|
|
|
|
dq2 = getSignedDistance(p0x, p0y, p3x, p3y, q2x, q2y),
|
2013-05-26 20:59:01 -04:00
|
|
|
dq3 = getSignedDistance(p0x, p0y, p3x, p3y, q3x, q3y);
|
|
|
|
// Find the minimum and maximum distances from l, this is useful for
|
|
|
|
// checking whether the curves intersect with each other or not.
|
2013-05-25 01:30:13 -04:00
|
|
|
// If the fatlines don't overlap, we have no intersections!
|
2013-05-26 20:59:01 -04:00
|
|
|
if (dmin > Math.max(dq0, dq1, dq2, dq3)
|
|
|
|
|| dmax < Math.min(dq0, dq1, dq2, dq3))
|
2013-05-25 01:30:13 -04:00
|
|
|
return 0;
|
2013-05-26 20:18:54 -04:00
|
|
|
var hull = getConvexHull(dq0, dq1, dq2, dq3),
|
2013-05-26 20:59:01 -04:00
|
|
|
swap;
|
2013-05-25 01:30:13 -04:00
|
|
|
if (dq3 < dq0) {
|
2013-05-26 20:59:01 -04:00
|
|
|
swap = dmin;
|
2013-05-25 01:30:13 -04:00
|
|
|
dmin = dmax;
|
2013-05-26 20:59:01 -04:00
|
|
|
dmax = swap;
|
2013-05-25 01:30:13 -04:00
|
|
|
}
|
|
|
|
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
|
|
|
|
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
|
|
|
|
// for the coorresponding t values (tmin, tmax): Portions of curve v2
|
|
|
|
// before tmin and after tmax can safely be clipped away.
|
|
|
|
var tmaxdmin = -Infinity,
|
|
|
|
tmin = Infinity,
|
|
|
|
tmax = -Infinity;
|
2013-05-26 20:18:54 -04:00
|
|
|
for (var i = 0, l = hull.length; i < l; i++) {
|
|
|
|
var p1 = hull[i],
|
|
|
|
p2 = hull[(i + 1) % l];
|
|
|
|
if (p2[1] < p1[1]) {
|
2013-05-26 20:59:01 -04:00
|
|
|
swap = p2;
|
2013-05-26 20:18:54 -04:00
|
|
|
p2 = p1;
|
2013-05-26 20:59:01 -04:00
|
|
|
p1 = swap;
|
2013-05-25 01:30:13 -04:00
|
|
|
}
|
2013-05-26 20:18:54 -04:00
|
|
|
var x1 = p1[0],
|
|
|
|
y1 = p1[1],
|
|
|
|
x2 = p2[0],
|
|
|
|
y2 = p2[1];
|
|
|
|
// We know that (x2 - x1) is never 0
|
|
|
|
var inv = (y2 - y1) / (x2 - x1);
|
|
|
|
if (dmin >= y1 && dmin <= y2) {
|
|
|
|
var ixdx = x1 + (dmin - y1) / inv;
|
2013-05-25 01:30:13 -04:00
|
|
|
if (ixdx < tmin)
|
|
|
|
tmin = ixdx;
|
|
|
|
if (ixdx > tmaxdmin)
|
|
|
|
tmaxdmin = ixdx;
|
|
|
|
}
|
2013-05-26 20:18:54 -04:00
|
|
|
if (dmax >= y1 && dmax <= y2) {
|
|
|
|
var ixdx = x1 + (dmax - y1) / inv;
|
2013-05-25 01:30:13 -04:00
|
|
|
if (ixdx > tmax)
|
|
|
|
tmax = ixdx;
|
|
|
|
if (ixdx < tmin)
|
|
|
|
tmin = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Return the parameter values for v2 for which we can be sure that the
|
|
|
|
// intersection with v1 lies within.
|
|
|
|
if (tmin !== Infinity && tmax !== -Infinity) {
|
2013-05-26 20:59:01 -04:00
|
|
|
var min = Math.min(dmin, dmax),
|
|
|
|
max = Math.max(dmin, dmax);
|
|
|
|
if (dq3 > min && dq3 < max)
|
2013-05-25 01:30:13 -04:00
|
|
|
tmax = 1;
|
2013-05-26 20:59:01 -04:00
|
|
|
if (dq0 > min && dq0 < max)
|
2013-05-25 01:30:13 -04:00
|
|
|
tmin = 0;
|
|
|
|
if (tmaxdmin > tmax)
|
|
|
|
tmax = 1;
|
|
|
|
// tmin and tmax are within the range (0, 1). We need to project it
|
|
|
|
// to the original parameter range for v2.
|
|
|
|
var v2tmin = range2[0],
|
|
|
|
tdiff = range2[1] - v2tmin;
|
|
|
|
range2[0] = v2tmin + tmin * tdiff;
|
|
|
|
range2[1] = v2tmin + tmax * tdiff;
|
|
|
|
// If the new parameter range fails to converge by atleast 20% of
|
|
|
|
// the original range, possibly we have multiple intersections.
|
|
|
|
// We need to subdivide one of the curves.
|
|
|
|
if ((tdiff - (range2[1] - range2[0])) / tdiff >= 0.2)
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
// TODO: Try checking with a perpendicular fatline to see if the curves
|
|
|
|
// overlap if it is any faster than this
|
|
|
|
if (Curve.getBounds(v1).touches(Curve.getBounds(v2)))
|
|
|
|
return -1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t))
|
|
|
|
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
|
|
|
|
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
|
|
|
|
* curve are already sorted in the X axis in the increasing order.
|
|
|
|
* Calculating convex-hull is much easier than a set of arbitrary points.
|
|
|
|
*/
|
|
|
|
function getConvexHull(dq0, dq1, dq2, dq3) {
|
2013-05-26 20:59:01 -04:00
|
|
|
var p0 = [ 0, dq0 ],
|
2013-05-26 20:39:13 -04:00
|
|
|
p1 = [ 1 / 3, dq1 ],
|
|
|
|
p2 = [ 2 / 3, dq2 ],
|
2013-05-26 20:52:05 -04:00
|
|
|
p3 = [ 1, dq3 ],
|
|
|
|
// Find signed distance of p1 and p2 from line [ p0, p3 ]
|
2013-05-26 20:59:01 -04:00
|
|
|
getSignedDistance = Line.getSignedDistance,
|
2013-05-26 20:52:05 -04:00
|
|
|
dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
|
|
|
|
dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2);
|
2013-05-26 20:39:13 -04:00
|
|
|
// Check if p1 and p2 are on the same side of the line [ p0, p3 ]
|
2013-05-26 20:52:05 -04:00
|
|
|
if (dist1 * dist2 < 0) {
|
|
|
|
// p1 and p2 lie on different sides of [ p0, p3 ]. The hull is a
|
|
|
|
// quadrilateral and line [ p0, p3 ] is NOT part of the hull so we
|
2013-05-26 20:48:36 -04:00
|
|
|
// are pretty much done here.
|
2013-05-26 20:40:40 -04:00
|
|
|
return [ p0, p1, p3, p2 ];
|
2013-05-25 01:30:13 -04:00
|
|
|
}
|
2013-05-26 20:52:05 -04:00
|
|
|
// p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be
|
2013-05-26 20:39:13 -04:00
|
|
|
// a triangle or a quadrilateral and line [ p0, p3 ] is part of the
|
2013-05-25 01:30:13 -04:00
|
|
|
// hull. Check if the hull is a triangle or a quadrilateral.
|
2013-05-26 20:39:13 -04:00
|
|
|
var pmax, cross;
|
2013-05-26 20:52:05 -04:00
|
|
|
if (Math.abs(dist1) > Math.abs(dist2)) {
|
2013-05-26 20:39:13 -04:00
|
|
|
pmax = p1;
|
2013-05-25 01:30:13 -04:00
|
|
|
// apex is dq3 and the other apex point is dq0 vector
|
|
|
|
// dqapex->dqapex2 or base vector which is already part of the hull.
|
2013-05-26 20:32:44 -04:00
|
|
|
// cross = (vqa1a2X * vqa1MinY - vqa1a2Y * vqa1MinX)
|
|
|
|
// * (vqa1MaxX * vqa1MinY - vqa1MaxY * vqa1MinX)
|
|
|
|
cross = (dq3 - dq2 - (dq3 - dq0) / 3)
|
|
|
|
* (2 * (dq3 - dq2) - dq3 + dq1) / 3;
|
2013-05-25 01:30:13 -04:00
|
|
|
} else {
|
2013-05-26 20:39:13 -04:00
|
|
|
pmax = p2;
|
2013-05-25 01:30:13 -04:00
|
|
|
// apex is dq0 in this case, and the other apex point is dq3 vector
|
|
|
|
// dqapex->dqapex2 or base vector which is already part of the hull.
|
2013-05-26 20:32:44 -04:00
|
|
|
cross = (dq1 - dq0 + (dq0 - dq3) / 3)
|
|
|
|
* (-2 * (dq0 - dq1) + dq0 - dq2) / 3;
|
2013-05-25 01:30:13 -04:00
|
|
|
}
|
2013-05-26 20:48:36 -04:00
|
|
|
// Compare cross products of these vectors to determine if the point is
|
|
|
|
// in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral.
|
2013-05-26 20:32:44 -04:00
|
|
|
return cross < 0
|
2013-05-26 20:39:13 -04:00
|
|
|
// p2 is inside the triangle, hull is a triangle.
|
|
|
|
? [ p0, pmax, p3 ]
|
2013-05-25 01:30:13 -04:00
|
|
|
// Convexhull is a quadrilateral and we need all lines in the
|
2013-05-26 20:39:13 -04:00
|
|
|
// correct order where line [ p1, p3 ] is part of the hull.
|
|
|
|
: [ p0, p1, p2, p3 ];
|
2013-05-25 01:30:13 -04:00
|
|
|
}
|
|
|
|
/*#*/ } // options.fatline
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Intersections between curve and line becomes rather simple here mostly
|
|
|
|
* because of Numerical class. We can rotate the curve and line so that the
|
|
|
|
* line is on the X axis, and solve the implicit equations for the X axis
|
|
|
|
* and the curve.
|
|
|
|
*/
|
2013-06-13 18:53:28 -04:00
|
|
|
function addCurveLineIntersections(v1, v2, curve1, curve2, locations) {
|
|
|
|
var flip = Curve.isLinear(v1),
|
|
|
|
vc = flip ? v2 : v1,
|
2013-05-25 01:30:13 -04:00
|
|
|
vl = flip ? v1 : v2,
|
|
|
|
l1x = vl[0], l1y = vl[1],
|
|
|
|
l2x = vl[6], l2y = vl[7],
|
|
|
|
// Rotate both curve and line around l1 so that line is on x axis
|
|
|
|
lvx = l2x - l1x,
|
|
|
|
lvy = l2y - l1y,
|
|
|
|
// Angle with x axis (1, 0)
|
|
|
|
angle = Math.atan2(-lvy, lvx),
|
|
|
|
sin = Math.sin(angle),
|
|
|
|
cos = Math.cos(angle),
|
|
|
|
// (rl1x, rl1y) = (0, 0)
|
|
|
|
rl2x = lvx * cos - lvy * sin,
|
|
|
|
vcr = [];
|
|
|
|
|
|
|
|
for(var i = 0; i < 8; i += 2) {
|
|
|
|
var x = vc[i] - l1x,
|
|
|
|
y = vc[i + 1] - l1y;
|
|
|
|
vcr.push(
|
|
|
|
x * cos - y * sin,
|
|
|
|
y * cos + x * sin);
|
|
|
|
}
|
|
|
|
var roots = [],
|
2013-10-29 10:44:42 -04:00
|
|
|
count = Curve.solveCubic(vcr, 1, 0, roots, 0, 1);
|
2013-05-25 01:30:13 -04:00
|
|
|
// NOTE: count could be -1 for inifnite solutions, but that should only
|
|
|
|
// happen with lines, in which case we should not be here.
|
|
|
|
for (var i = 0; i < count; i++) {
|
2013-10-29 10:44:42 -04:00
|
|
|
var tc = roots[i],
|
2013-10-29 11:09:35 -04:00
|
|
|
x = Curve.evaluate(vcr, tc, 0).x;
|
2013-10-29 10:44:42 -04:00
|
|
|
// We do have a point on the infinite line. Check if it falls on
|
|
|
|
// the line *segment*.
|
2013-10-29 11:09:35 -04:00
|
|
|
if (x >= 0 && x <= rl2x) {
|
|
|
|
var tl = Curve.getParameterOf([0, 0, 0, 0, rl2x, 0, rl2x, 0],
|
|
|
|
x, 0),
|
|
|
|
t1 = flip ? tl : tc,
|
2013-10-29 10:44:42 -04:00
|
|
|
t2 = flip ? tc : tl;
|
|
|
|
addLocation(locations,
|
|
|
|
curve1, t1, Curve.evaluate(v1, t1, 0),
|
|
|
|
curve2, t2, Curve.evaluate(v2, t2, 0));
|
2013-05-25 01:30:13 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-05-26 20:06:23 -04:00
|
|
|
function addLineIntersection(v1, v2, curve1, curve2, locations) {
|
2013-05-25 01:30:13 -04:00
|
|
|
var point = Line.intersect(
|
|
|
|
v1[0], v1[1], v1[6], v1[7],
|
2013-05-26 18:44:52 -04:00
|
|
|
v2[0], v2[1], v2[6], v2[7]);
|
2013-05-25 01:30:13 -04:00
|
|
|
// Passing null for parameter leads to lazy determination of parameter
|
|
|
|
// values in CurveLocation#getParameter() only once they are requested.
|
|
|
|
if (point)
|
|
|
|
addLocation(locations, curve1, null, point, curve2);
|
|
|
|
}
|
|
|
|
|
2013-05-25 14:23:59 -04:00
|
|
|
return { statics: /** @lends Curve */{
|
2013-05-25 01:30:13 -04:00
|
|
|
// We need to provide the original left curve reference to the
|
|
|
|
// #getIntersections() calls as it is required to create the resulting
|
|
|
|
// CurveLocation objects.
|
|
|
|
getIntersections: function(v1, v2, curve1, curve2, locations) {
|
|
|
|
var linear1 = Curve.isLinear(v1),
|
|
|
|
linear2 = Curve.isLinear(v2);
|
|
|
|
// Determine the correct intersection method based on values of
|
|
|
|
// linear1 & 2:
|
|
|
|
(linear1 && linear2
|
2013-05-26 20:06:23 -04:00
|
|
|
? addLineIntersection
|
2013-05-25 01:30:13 -04:00
|
|
|
: linear1 || linear2
|
2013-05-26 20:06:23 -04:00
|
|
|
? addCurveLineIntersections
|
|
|
|
: addCurveIntersections)(v1, v2, curve1, curve2, locations);
|
2013-05-25 01:30:13 -04:00
|
|
|
return locations;
|
|
|
|
}
|
|
|
|
}};
|
2013-05-06 02:14:49 -04:00
|
|
|
});
|