mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-20 22:39:50 -05:00
Simplify winding algorithm by reusing orientation check.
This commit is contained in:
parent
7c4518e4d0
commit
caa50236dd
1 changed files with 48 additions and 37 deletions
|
@ -689,15 +689,19 @@ statics: {
|
|||
},
|
||||
|
||||
_getWinding: function(v, x, y, roots1, roots2) {
|
||||
var tolerance = /*#=*/ Numerical.TOLERANCE,
|
||||
abs = Math.abs;
|
||||
|
||||
// Implementation of the crossing number algorithm:
|
||||
// http://en.wikipedia.org/wiki/Point_in_polygon
|
||||
// Solve the y-axis cubic polynomial for y and count all solutions
|
||||
// to the right of x as crossings.
|
||||
if (Curve.isLinear(v)) {
|
||||
// Special case for handling lines.
|
||||
var tolerance = /*#=*/ Numerical.TOLERANCE,
|
||||
abs = Math.abs;
|
||||
|
||||
// Looks at the curve's start and end y coordinates to determine
|
||||
// orientation. This only makes sense for curves with clear orientation,
|
||||
// which is why we need to split them at y extrema, see below.
|
||||
// Returns 0 if the curve is outside the boundaries and is not to be
|
||||
// considered.
|
||||
function getOrientation(v) {
|
||||
var y0 = v[1],
|
||||
y1 = v[7],
|
||||
dir = 1;
|
||||
|
@ -708,7 +712,15 @@ statics: {
|
|||
dir = -1;
|
||||
}
|
||||
if (y < y0 || y > y1)
|
||||
return 0;
|
||||
dir = 0;
|
||||
return dir;
|
||||
}
|
||||
|
||||
if (Curve.isLinear(v)) {
|
||||
// Special simplified case for handling lines.
|
||||
var dir = getOrientation(v);
|
||||
if (!dir)
|
||||
return 0;
|
||||
var cross = (v[6] - v[0]) * (y - v[1]) - (v[7] - v[1]) * (x - v[0]);
|
||||
return (cross < -tolerance ? -1 : 1) == dir ? 0 : dir;
|
||||
}
|
||||
|
@ -719,18 +731,18 @@ statics: {
|
|||
y1 = v[3],
|
||||
y2 = v[5],
|
||||
y3 = v[7];
|
||||
// Split the curve at Y extremas, to get mono bezier curves
|
||||
// Split the curve at y extrema, to get bezier curves with clear
|
||||
// orientation: Calculate the derivative and find its roots.
|
||||
var a = 3 * (y1 - y2) - y0 + y3,
|
||||
b = 2 * (y0 + y2) - 4 * y1,
|
||||
c = y1 - y0,
|
||||
// Keep then range to 0 .. 1 (excluding) in the search for y extrema
|
||||
count = Numerical.solveQuadratic(a, b, c, roots1, tolerance,
|
||||
1 - tolerance);
|
||||
|
||||
var winding = 0,
|
||||
left,
|
||||
right = v;
|
||||
var t1 = roots1[0];
|
||||
c = y1 - y0;
|
||||
// Keep then range to 0 .. 1 (excluding) in the search for y extrema
|
||||
var count = Numerical.solveQuadratic(a, b, c, roots1, tolerance,
|
||||
1 - tolerance),
|
||||
left, // The part of the curve that's chopped off.
|
||||
right = v, // The part that's left to be chopped.
|
||||
t1 = roots1[0], // The first root
|
||||
winding = 0;
|
||||
for (var i = 0; i <= count; i++) {
|
||||
if (i === count) {
|
||||
left = right;
|
||||
|
@ -749,36 +761,32 @@ statics: {
|
|||
left[3] = left[1]; // curve2.handle1.y = curve2.point1.y;
|
||||
if (i < count)
|
||||
left[5] = right[1]; // curve1.handle2.y = curve2.point1.y;
|
||||
var dir = 1;
|
||||
if (left[1] > left[7]) {
|
||||
left = [
|
||||
left[6], left[7],
|
||||
left[4], left[5],
|
||||
left[2], left[3],
|
||||
left[0], left[1]
|
||||
];
|
||||
dir = -1;
|
||||
}
|
||||
if (y < left[1] || y > left[7])
|
||||
var dir = getOrientation(left);
|
||||
if (!dir)
|
||||
continue;
|
||||
// Adjust start and end range depending on if curve was flipped.
|
||||
// In normal orientation we exclude the end point since it's also
|
||||
// the start point of the next curve. If flipped, we have to exclude
|
||||
// the end point instead.
|
||||
var min = -tolerance * dir,
|
||||
t2,
|
||||
var t2,
|
||||
px;
|
||||
if (Curve.solveCubic(left, 1, y, roots2, min, 1 + min) === 1) {
|
||||
// Since we've split at y extrema, there can only be 0, 1, or
|
||||
// infinite solutions now.
|
||||
if (Curve.solveCubic(left, 1, y, roots2, -tolerance, 1 + -tolerance)
|
||||
=== 1) {
|
||||
t2 = roots2[0];
|
||||
px = Curve.evaluate(left, t2, 0).x;
|
||||
} else {
|
||||
var mid = (left[1] + left[7]) / 2;
|
||||
px = y < mid ? left[0] : left[6];
|
||||
t2 = y < mid ? 0 : 1;
|
||||
// Filter out end points based on direction.
|
||||
if (dir < 0 && abs(t2) < tolerance && y == left[1] ||
|
||||
dir > 0 && abs(t2 - 1) < tolerance && y == left[7])
|
||||
// Pick t2 based on the direction of the curve. If y < mid,
|
||||
// choose the beginning (which is the end of a curve with
|
||||
// negative orientation, as we're not actually flipping curves).
|
||||
t2 = y < mid && dir > 0 ? 0 : 1;
|
||||
// Filter out the end point, as it'll be the start point of the
|
||||
// next curve.
|
||||
if (t2 === 1 && y == left[7])
|
||||
continue;
|
||||
px = t2 === 0 ? left[0] : left[6];
|
||||
}
|
||||
// See if we're touching a horizontal stationary point by looking at
|
||||
// the tanget's y coordinate.
|
||||
|
@ -797,8 +805,11 @@ statics: {
|
|||
|| abs(t2 - 1) < tolerance && x != left[6]))
|
||||
continue;
|
||||
// If this is a horizontal stationary point, and we're at the
|
||||
// end of the curve, flip the orientation of dir.
|
||||
winding += flat && abs(t2 - 1) < tolerance ? -dir : dir;
|
||||
// end of the curve (or at the beginning of a curve with
|
||||
// negative direction, as we're not actually flipping them),
|
||||
// flip dir, as the curve is about to change orientation.
|
||||
winding += flat && abs(t2 - (dir > 0 ? 1 : 0)) < tolerance
|
||||
? -dir : dir;
|
||||
}
|
||||
}
|
||||
return winding;
|
||||
|
|
Loading…
Reference in a new issue