paper.js/src/path/Curve.js

1527 lines
50 KiB
JavaScript
Raw Normal View History

2011-03-06 19:50:44 -05:00
/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
2011-03-07 20:41:50 -05:00
* http://paperjs.org/
*
* Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey
2011-03-06 19:50:44 -05:00
* http://lehni.org/ & http://jonathanpuckey.com/
*
2011-07-01 06:17:45 -04:00
* Distributed under the MIT license. See LICENSE file for details.
*
2011-03-07 20:41:50 -05:00
* All rights reserved.
2011-03-06 19:50:44 -05:00
*/
/**
* @name Curve
*
2011-06-27 08:58:17 -04:00
* @class The Curve object represents the parts of a path that are connected by
* two following {@link Segment} objects. The curves of a path can be accessed
* through its {@link Path#curves} array.
2011-06-27 08:58:17 -04:00
*
* While a segment describe the anchor point and its incoming and outgoing
* handles, a Curve object describes the curve passing between two such
* segments. Curves and segments represent two different ways of looking at the
* same thing, but focusing on different aspects. Curves for example offer many
* convenient ways to work with parts of the path, finding lengths, positions or
* tangents at given offsets.
*/
var Curve = Base.extend(/** @lends Curve# */{
_class: 'Curve',
2011-05-23 11:24:36 -04:00
/**
* Creates a new curve object.
*
2013-04-21 09:43:57 -04:00
* @name Curve#initialize
2011-05-23 11:24:36 -04:00
* @param {Segment} segment1
* @param {Segment} segment2
*/
2013-04-21 09:43:57 -04:00
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @param {Point} point1
* @param {Point} handle1
* @param {Point} handle2
* @param {Point} point2
*/
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @ignore
* @param {Number} x1
* @param {Number} y1
* @param {Number} handle1x
* @param {Number} handle1y
* @param {Number} handle2x
* @param {Number} handle2y
* @param {Number} x2
* @param {Number} y2
*/
initialize: function Curve(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
var count = arguments.length;
if (count === 3) {
// Undocumented internal constructor, used by Path#getCurves()
// new Segment(path, segment1, segment2);
this._path = arg0;
this._segment1 = arg1;
this._segment2 = arg2;
} else if (count === 0) {
2011-03-06 07:24:15 -05:00
this._segment1 = new Segment();
this._segment2 = new Segment();
} else if (count === 1) {
// new Segment(segment);
// Note: This copies from existing segments through bean getters
2011-03-06 07:24:15 -05:00
this._segment1 = new Segment(arg0.segment1);
this._segment2 = new Segment(arg0.segment2);
} else if (count === 2) {
// new Segment(segment1, segment2);
this._segment1 = new Segment(arg0);
this._segment2 = new Segment(arg1);
} else {
var point1, handle1, handle2, point2;
if (count === 4) {
point1 = arg0;
handle1 = arg1;
handle2 = arg2;
point2 = arg3;
} else if (count === 8) {
// Convert getValue() array back to points and handles so we
// can create segments for those.
point1 = [arg0, arg1];
point2 = [arg6, arg7];
handle1 = [arg2 - arg0, arg3 - arg1];
handle2 = [arg4 - arg6, arg5 - arg7];
}
this._segment1 = new Segment(point1, null, handle1);
this._segment2 = new Segment(point2, handle2, null);
2011-03-06 07:24:15 -05:00
}
},
_changed: function() {
// Clear cached values.
delete this._length;
delete this._bounds;
},
2011-03-06 07:24:15 -05:00
/**
* The first anchor point of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getPoint1: function() {
return this._segment1._point;
},
setPoint1: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment1._point.set(point.x, point.y);
},
/**
* The second anchor point of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getPoint2: function() {
return this._segment2._point;
},
setPoint2: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment2._point.set(point.x, point.y);
},
2011-03-06 07:24:15 -05:00
/**
* The handle point that describes the tangent in the first anchor point.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getHandle1: function() {
return this._segment1._handleOut;
},
setHandle1: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment1._handleOut.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the second anchor point.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getHandle2: function() {
return this._segment2._handleIn;
},
setHandle2: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment2._handleIn.set(point.x, point.y);
},
/**
* The first segment of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Segment
* @bean
2011-03-06 07:24:15 -05:00
*/
getSegment1: function() {
return this._segment1;
},
/**
* The second segment of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Segment
* @bean
2011-03-06 07:24:15 -05:00
*/
getSegment2: function() {
return this._segment2;
},
2011-05-23 11:24:36 -04:00
/**
* The path that the curve belongs to.
*
2011-05-23 11:24:36 -04:00
* @type Path
* @bean
*/
2011-03-06 08:26:09 -05:00
getPath: function() {
return this._path;
},
2011-05-23 11:24:36 -04:00
/**
* The index of the curve in the {@link Path#curves} array.
*
* @type Number
2011-05-23 11:24:36 -04:00
* @bean
*/
2011-03-06 08:26:09 -05:00
getIndex: function() {
return this._segment1._index;
2011-03-06 08:26:09 -05:00
},
2011-05-23 11:24:36 -04:00
/**
* The next curve in the {@link Path#curves} array that the curve
* belongs to.
*
2011-05-23 11:24:36 -04:00
* @type Curve
* @bean
*/
2011-03-06 08:26:09 -05:00
getNext: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index + 1]
2011-04-30 18:22:29 -04:00
|| this._path._closed && curves[0]) || null;
2011-03-06 08:26:09 -05:00
},
2011-05-23 11:24:36 -04:00
/**
* The previous curve in the {@link Path#curves} array that the curve
* belongs to.
*
2011-05-23 11:24:36 -04:00
* @type Curve
* @bean
*/
2011-03-06 08:26:09 -05:00
getPrevious: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index - 1]
2011-04-30 18:22:29 -04:00
|| this._path._closed && curves[curves.length - 1]) || null;
2011-03-06 08:26:09 -05:00
},
2011-04-21 13:54:32 -04:00
2011-05-23 11:24:36 -04:00
/**
* Specifies whether the handles of the curve are selected.
*
* @type Boolean
2011-05-23 11:24:36 -04:00
* @bean
*/
2011-04-21 13:54:32 -04:00
isSelected: function() {
return this.getHandle1().isSelected() && this.getHandle2().isSelected();
2011-04-21 13:54:32 -04:00
},
2011-03-06 08:26:09 -05:00
2011-05-23 11:24:36 -04:00
setSelected: function(selected) {
this.getHandle1().setSelected(selected);
this.getHandle2().setSelected(selected);
},
getValues: function() {
return Curve.getValues(this._segment1, this._segment2);
},
getPoints: function() {
// Convert to array of absolute points
var coords = this.getValues(),
points = [];
for (var i = 0; i < 8; i += 2)
points.push(new Point(coords[i], coords[i + 1]));
return points;
},
2011-05-23 11:24:36 -04:00
// DOCS: document Curve#getLength(from, to)
/**
* The approximated length of the curve in points.
*
* @type Number
2011-05-23 11:24:36 -04:00
* @bean
*/
// Hide parameters from Bootstrap so it injects bean too
getLength: function(/* from, to */) {
var from = arguments[0],
to = arguments[1],
2013-04-25 20:47:11 -04:00
fullLength = arguments.length === 0 || from === 0 && to === 1;
if (fullLength && this._length != null)
return this._length;
var length = Curve.getLength(this.getValues(), from, to);
if (fullLength)
this._length = length;
return length;
},
getArea: function() {
return Curve.getArea(this.getValues());
},
getPart: function(from, to) {
return new Curve(Curve.getPart(this.getValues(), from, to));
},
/**
* Checks if this curve is linear, meaning it does not define any curve
* handle.
* @return {Boolean} {@true the curve is linear}
*/
isLinear: function() {
return this._segment1._handleOut.isZero()
&& this._segment2._handleIn.isZero();
},
getIntersections: function(curve) {
return Curve.getIntersections(this.getValues(), curve.getValues(),
this, curve, []);
},
// TODO: adjustThroughPoint
2011-05-23 11:24:36 -04:00
/**
* Returns a reversed version of the curve, without modifying the curve
* itself.
*
2011-05-23 11:24:36 -04:00
* @return {Curve} a reversed version of the curve
*/
reverse: function() {
return new Curve(this._segment2.reverse(), this._segment1.reverse());
},
2012-12-30 13:49:17 -05:00
/**
* Private method that handles all types of offset / isParameter pairs and
* converts it to a curve parameter.
*/
_getParameter: function(offset, isParameter) {
return isParameter
? offset
// Accept CurveLocation objects, and objects that act like
// them:
: offset && offset.curve === this
? offset.parameter
: offset === undefined && isParameter === undefined
? 0.5 // default is in the middle
: this.getParameterAt(offset, 0);
},
/**
* Divides the curve into two curves at the given offset. The curve itself
* is modified and becomes the first part, the second part is returned as a
* new curve. If the modified curve belongs to a path item, the second part
* is also added to the path.
*
* @name Curve#divide
* @function
* @param {Number} [offset=0.5] the offset on the curve at which to split,
* or the curve time parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
2012-12-30 13:49:17 -05:00
* @return {Curve} the second part of the divided curve
*/
// TODO: Rename to divideAt()?
divide: function(offset, isParameter) {
var parameter = this._getParameter(offset, isParameter),
2013-12-01 17:48:59 -05:00
tolerance = /*#=*/ Numerical.TOLERANCE,
res = null;
if (parameter > tolerance && parameter < 1 - tolerance) {
2012-12-30 13:49:17 -05:00
var parts = Curve.subdivide(this.getValues(), parameter),
isLinear = this.isLinear(),
2012-12-30 13:49:17 -05:00
left = parts[0],
2013-05-04 00:00:46 -04:00
right = parts[1];
2012-12-30 13:49:17 -05:00
// Write back the results:
if (!isLinear) {
2013-05-04 00:00:46 -04:00
this._segment1._handleOut.set(left[2] - left[0],
left[3] - left[1]);
// segment2 is the end segment. By inserting newSegment
// between segment1 and 2, 2 becomes the end segment.
// Convert absolute -> relative
2013-05-04 00:00:46 -04:00
this._segment2._handleIn.set(right[4] - right[6],
right[5] - right[7]);
}
2012-12-30 13:49:17 -05:00
// Create the new segment, convert absolute -> relative:
2012-12-30 13:49:17 -05:00
var x = left[6], y = left[7],
segment = new Segment(new Point(x, y),
!isLinear && new Point(left[4] - x, left[5] - y),
!isLinear && new Point(right[2] - x, right[3] - y));
2012-12-30 13:49:17 -05:00
// Insert it in the segments list, if needed:
if (this._path) {
// Insert at the end if this curve is a closing curve of a
// closed path, since otherwise it would be inserted at 0.
if (this._segment1._index > 0 && this._segment2._index === 0) {
2012-12-30 13:49:17 -05:00
this._path.add(segment);
} else {
this._path.insert(this._segment2._index, segment);
}
// The way Path#_add handles curves, this curve will always
// become the owner of the newly inserted segment.
// TODO: I expect this.getNext() to produce the correct result,
// but since we're inserting differently in _add (something
2013-05-04 00:00:46 -04:00
// linked with CurveLocation#divide()), this is not the case...
res = this; // this.getNext();
2012-12-30 13:49:17 -05:00
} else {
// otherwise create it from the result of split
var end = this._segment2;
this._segment2 = segment;
res = new Curve(segment, end);
}
}
return res;
},
/**
* Splits the path this curve belongs to at the given offset. After
* splitting, the path will be open. If the path was open already, splitting
* will result in two paths.
*
* @name Curve#split
* @function
* @param {Number} [offset=0.5] the offset on the curve at which to split,
* or the curve time parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
2013-08-23 22:45:28 -04:00
* @return {Path} the newly created path after splitting, if any
* @see Path#split(index, parameter)
*/
// TODO: Rename to splitAt()?
split: function(offset, isParameter) {
return this._path
? this._path.split(this._segment1._index,
this._getParameter(offset, isParameter))
: null;
},
2011-05-23 11:24:36 -04:00
/**
* Returns a copy of the curve.
*
2011-05-23 11:24:36 -04:00
* @return {Curve}
*/
clone: function() {
return new Curve(this._segment1, this._segment2);
},
2011-05-23 11:24:36 -04:00
/**
2013-08-23 22:45:28 -04:00
* @return {String} a string representation of the curve
2011-05-23 11:24:36 -04:00
*/
toString: function() {
2011-05-02 03:57:55 -04:00
var parts = [ 'point1: ' + this._segment1._point ];
if (!this._segment1._handleOut.isZero())
parts.push('handle1: ' + this._segment1._handleOut);
if (!this._segment2._handleIn.isZero())
parts.push('handle2: ' + this._segment2._handleIn);
parts.push('point2: ' + this._segment2._point);
return '{ ' + parts.join(', ') + ' }';
},
// Mess with indentation in order to get more line-space below...
statics: {
getValues: function(segment1, segment2) {
var p1 = segment1._point,
h1 = segment1._handleOut,
h2 = segment2._handleIn,
p2 = segment2._point;
return [
p1._x, p1._y,
p1._x + h1._x, p1._y + h1._y,
p2._x + h2._x, p2._y + h2._y,
p2._x, p2._y
];
},
evaluate: function(v, t, type) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
x, y;
// Handle special case at beginning / end of curve
2013-04-20 20:26:51 -04:00
if (type === 0 && (t === 0 || t === 1)) {
x = t === 0 ? p1x : p2x;
y = t === 0 ? p1y : p2y;
} else {
// Calculate the polynomial coefficients.
var cx = 3 * (c1x - p1x),
bx = 3 * (c2x - c1x) - cx,
ax = p2x - p1x - cx - bx,
cy = 3 * (c1y - p1y),
by = 3 * (c2y - c1y) - cy,
ay = p2y - p1y - cy - by;
if (type === 0) {
// Calculate the curve point at parameter value t
x = ((ax * t + bx) * t + cx) * t + p1x;
y = ((ay * t + by) * t + cy) * t + p1y;
} else {
// 1: tangent, 1st derivative
// 2: normal, 1st derivative
// 3: curvature, 1st derivative & 2nd derivative
// Prevent tangents and normals of length 0:
// http://stackoverflow.com/questions/10506868/
var tolerance = /*#=*/ Numerical.TOLERANCE;
if (t < tolerance && c1x === p1x && c1y === p1y
|| t > 1 - tolerance && c2x === p2x && c2y === p2y) {
x = p2x - p1x;
y = p2y - p1y;
} else {
// Simply use the derivation of the bezier function for both
// the x and y coordinates:
x = (3 * ax * t + 2 * bx) * t + cx;
y = (3 * ay * t + 2 * by) * t + cy;
}
if (type === 3) {
// Calculate 2nd derivative, and curvature from there:
// http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
// k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
var x2 = 6 * ax * t + 2 * bx,
y2 = 6 * ay * t + 2 * by;
return (x * y2 - y * x2) / Math.pow(x * x + y * y, 3 / 2);
}
}
}
// The normal is simply the rotated tangent:
return type == 2 ? new Point(y, -x) : new Point(x, y);
},
subdivide: function(v, t) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7];
if (t === undefined)
t = 0.5;
// Triangle computation, with loops unrolled.
var u = 1 - t,
// Interpolate from 4 to 3 points
p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y,
p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y,
p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y,
// Interpolate from 3 to 2 points
p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y,
p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y,
// Interpolate from 2 points to 1 point
p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y;
// We now have all the values we need to build the subcurves:
return [
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
];
},
// Converts from the point coordinates (p1, c1, c2, p2) for one axis to
// the polynomial coefficients and solves the polynomial for val
solveCubic: function (v, coord, val, roots, min, max) {
var p1 = v[coord],
c1 = v[coord + 2],
c2 = v[coord + 4],
p2 = v[coord + 6],
c = 3 * (c1 - p1),
b = 3 * (c2 - c1) - c,
a = p2 - p1 - c - b;
return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max);
},
getParameterOf: function(v, x, y) {
// Handle beginnings and end seperately, as they are not detected
// sometimes.
if (Math.abs(v[0] - x) < /*#=*/ Numerical.TOLERANCE
&& Math.abs(v[1] - y) < /*#=*/ Numerical.TOLERANCE)
return 0;
if (Math.abs(v[6] - x) < /*#=*/ Numerical.TOLERANCE
&& Math.abs(v[7] - y) < /*#=*/ Numerical.TOLERANCE)
return 1;
var txs = [],
tys = [],
sx = Curve.solveCubic(v, 0, x, txs),
sy = Curve.solveCubic(v, 1, y, tys),
tx, ty;
// sx, sy == -1 means infinite solutions:
// Loop through all solutions for x and match with solutions for y,
// to see if we either have a matching pair, or infinite solutions
// for one or the other.
for (var cx = 0; sx == -1 || cx < sx;) {
if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) {
for (var cy = 0; sy == -1 || cy < sy;) {
if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) {
// Handle infinite solutions by assigning root of
// the other polynomial
if (sx == -1) tx = ty;
else if (sy == -1) ty = tx;
// Use average if we're within tolerance
if (Math.abs(tx - ty) < /*#=*/ Numerical.TOLERANCE)
return (tx + ty) * 0.5;
}
}
// Avoid endless loops here: If sx is infinite and there was
// no fitting ty, there's no solution for this bezier
if (sx == -1)
break;
}
}
return null;
},
// TODO: Find better name
getPart: function(v, from, to) {
if (from > 0)
v = Curve.subdivide(v, from)[1]; // [1] right
// Interpolate the parameter at 'to' in the new curve and
// cut there.
if (to < 1)
v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left
return v;
},
isLinear: function(v) {
var isZero = Numerical.isZero;
return isZero(v[0] - v[2]) && isZero(v[1] - v[3])
&& isZero(v[4] - v[6]) && isZero(v[5] - v[7]);
},
isFlatEnough: function(v, tolerance) {
// Thanks to Kaspar Fischer and Roger Willcocks for the following:
// http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ux = 3 * c1x - 2 * p1x - p2x,
uy = 3 * c1y - 2 * p1y - p2y,
vx = 3 * c2x - 2 * p2x - p1x,
vy = 3 * c2y - 2 * p2y - p1y;
return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy)
< 10 * tolerance * tolerance;
},
getArea: function(v) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7];
// http://objectmix.com/graphics/133553-area-closed-bezier-curve.html
return ( 3.0 * c1y * p1x - 1.5 * c1y * c2x
- 1.5 * c1y * p2x - 3.0 * p1y * c1x
- 1.5 * p1y * c2x - 0.5 * p1y * p2x
+ 1.5 * c2y * p1x + 1.5 * c2y * c1x
- 3.0 * c2y * p2x + 0.5 * p2y * p1x
+ 1.5 * p2y * c1x + 3.0 * p2y * c2x) / 10;
},
getBounds: function(v) {
var min = v.slice(0, 2), // Start with values of point1
max = min.slice(), // clone
2013-04-09 10:55:09 -04:00
roots = [0, 0];
for (var i = 0; i < 2; i++)
Curve._addBounds(v[i], v[i + 2], v[i + 4], v[i + 6],
i, 0, min, max, roots);
return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]);
},
/**
* Private helper for both Curve.getBounds() and Path.getBounds(), which
* finds the 0-crossings of the derivative of a bezier curve polynomial, to
* determine potential extremas when finding the bounds of a curve.
* Note: padding is only used for Path.getBounds().
*/
_addBounds: function(v0, v1, v2, v3, coord, padding, min, max, roots) {
// Code ported and further optimised from:
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
function add(value, padding) {
var left = value - padding,
right = value + padding;
if (left < min[coord])
min[coord] = left;
if (right > max[coord])
max[coord] = right;
}
// Calculate derivative of our bezier polynomial, divided by 3.
// Doing so allows for simpler calculations of a, b, c and leads to the
// same quadratic roots.
var a = 3 * (v1 - v2) - v0 + v3,
b = 2 * (v0 + v2) - 4 * v1,
2013-02-08 19:12:57 -05:00
c = v1 - v0,
count = Numerical.solveQuadratic(a, b, c, roots),
// Add some tolerance for good roots, as t = 0 / 1 are added
// seperately anyhow, and we don't want joins to be added with
// radiuses in getStrokeBounds()
tMin = /*#=*/ Numerical.TOLERANCE,
tMax = 1 - tMin;
// Only add strokeWidth to bounds for points which lie within 0 < t < 1
// The corner cases for cap and join are handled in getStrokeBounds()
add(v3, 0);
for (var i = 0; i < count; i++) {
var t = roots[i],
u = 1 - t;
// Test for good roots and only add to bounds if good.
if (tMin < t && t < tMax)
// Calculate bezier polynomial at t.
add(u * u * u * v0
+ 3 * u * u * t * v1
+ 3 * u * t * t * v2
+ t * t * t * v3,
padding);
}
},
_getWinding: function(v, prev, x, y, roots1, roots2) {
// Implementation of the crossing number algorithm:
// http://en.wikipedia.org/wiki/Point_in_polygon
// Solve the y-axis cubic polynomial for y and count all solutions
// to the right of x as crossings.
var tolerance = /*#=*/ Numerical.TOLERANCE,
abs = Math.abs;
// Looks at the curve's start and end y coordinates to determine
// orientation. This only makes sense for curves with clear orientation,
// which is why we need to split them at y extrema, see below.
// Returns 0 if the curve is outside the boundaries and is not to be
// considered.
function getDirection(v) {
var y0 = v[1],
y1 = v[7],
dir = y0 > y1 ? -1 : 1;
// Bounds check: Reverse y0 and y1 if direction is -1.
// Include end points, so we can handle them depending on different
// edge cases.
return dir === 1 && (y < y0 || y > y1)
|| dir === -1 && (y < y1 || y > y0)
? 0
: dir;
}
if (Curve.isLinear(v)) {
// Special simplified case for handling lines.
var dir = getDirection(v);
if (!dir)
return 0;
var cross = (v[6] - v[0]) * (y - v[1]) - (v[7] - v[1]) * (x - v[0]);
return (cross < -tolerance ? -1 : 1) == dir ? 0 : dir;
}
// Handle bezier curves. We need to chop them into smaller curves with
// defined orientation, by solving the derrivative curve for Y extrema.
var y0 = v[1],
y1 = v[3],
y2 = v[5],
y3 = v[7];
// Split the curve at y extrema, to get bezier curves with clear
// orientation: Calculate the derivative and find its roots.
var a = 3 * (y1 - y2) - y0 + y3,
b = 2 * (y0 + y2) - 4 * y1,
c = y1 - y0;
// Keep then range to 0 .. 1 (excluding) in the search for y extrema
var count = Numerical.solveQuadratic(a, b, c, roots1, tolerance,
1 - tolerance),
2013-10-19 19:57:11 -04:00
part, // The part of the curve that's chopped off.
rest = v, // The part that's left to be chopped.
t1 = roots1[0], // The first root
winding = 0;
for (var i = 0; i <= count; i++) {
if (i === count) {
2013-10-19 19:57:11 -04:00
part = rest;
} else {
2013-10-19 18:59:12 -04:00
// Divide the curve at t1.
2013-10-19 19:57:11 -04:00
var curves = Curve.subdivide(rest, t1);
part = curves[0];
rest = curves[1];
2013-10-19 18:59:12 -04:00
t1 = roots1[i];
// TODO: Watch for divide by 0
2013-10-19 18:59:12 -04:00
// Now renormalize t1 to the range of the next iteration.
t1 = (roots1[i + 1] - t1) / (1 - t1);
}
// Make sure that the connecting y extrema are flat
if (i > 0)
2013-10-19 19:57:11 -04:00
part[3] = part[1]; // curve2.handle1.y = curve2.point1.y;
if (i < count)
2013-10-19 19:57:11 -04:00
part[5] = rest[1]; // curve1.handle2.y = curve2.point1.y;
var dir = getDirection(part);
if (!dir)
continue;
// Adjust start and end range depending on if curve was flipped.
// In normal orientation we exclude the end point since it's also
// the start point of the next curve. If flipped, we have to exclude
// the end point instead.
var t2,
2013-10-19 18:59:12 -04:00
px;
// Since we've split at y extrema, there can only be 0, 1, or
// infinite solutions now.
2013-10-19 19:57:11 -04:00
if (Curve.solveCubic(part, 1, y, roots2, -tolerance, 1 + -tolerance)
=== 1) {
2013-10-19 18:59:12 -04:00
t2 = roots2[0];
2013-10-19 19:57:11 -04:00
px = Curve.evaluate(part, t2, 0).x;
} else {
2013-10-19 19:57:11 -04:00
var mid = (part[1] + part[7]) / 2;
// Pick t2 based on the direction of the curve. If y < mid,
// choose the beginning (which is the end of a curve with
// negative orientation, as we're not actually flipping curves).
t2 = y < mid && dir > 0 ? 0 : 1;
// Filter out the end point, as it'll be the start point of the
// next curve.
2013-10-19 19:57:11 -04:00
if (t2 === 1 && y == part[7])
continue;
2013-10-19 19:57:11 -04:00
px = t2 === 0 ? part[0] : part[6];
}
// See if we're touching a horizontal stationary point by looking at
// the tanget's y coordinate. There are two cases 0:
// A) The slope is 0, meaning we're touching a stationary
// point inside the curve.
// B) t2 == 0 and the slope changes between the current and the
// previous curve.
var slope = Curve.evaluate(part, t2, 1).y,
stationary = abs(slope) < tolerance || t2 < tolerance
&& Curve.evaluate(prev, 1, 1).y * slope < 0;
// Calculate compare tolerance based on curve orientation (dir), to
// add a bit of tolerance when considering points lying on the curve
// as inside. But if we're touching a horizontal stationary point,
// set compare tolerance to -tolerance, since we don't want to step
// side-ways in tolerance based on orientation. This is needed e.g.
// when touching the bottom tip of a circle.
// Pass 1 for Curve.evaluate() type to calculate tangent
if (x >= px + (stationary ? -tolerance : tolerance * dir)
2013-10-19 19:41:31 -04:00
// When touching a stationary point, only count it if we're
// actuall on it.
&& !(stationary && (abs(t2) < tolerance
&& abs(x - part[0]) > tolerance
|| abs(t2 - 1) < tolerance
&& abs(x - part[6]) > tolerance))) {
// If this is a horizontal stationary point, and we're at the
// end of the curve (or at the beginning of a curve with
// negative direction, as we're not actually flipping them),
// flip dir, as the curve is about to change orientation.
winding += stationary && abs(t2 - (dir > 0 ? 1 : 0)) < tolerance
? -dir : dir;
}
// Point the previous curve to the newly split part, so stationary
// points are correctly detected.
prev = part;
}
return winding;
}
}}, Base.each(['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'],
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without
// the need to create a Curve object first, as required by the code that
// finds path interesections.
function(name) {
this[name] = function() {
if (!this._bounds)
this._bounds = {};
var bounds = this._bounds[name];
if (!bounds) {
// Calculate the curve bounds by passing a segment list for the
// curve to the static Path.get*Boudns methods.
bounds = this._bounds[name] = Path[name]([this._segment1,
this._segment2], false, this._path.getStyle());
}
return bounds.clone();
};
},
/** @lends Curve# */{
/**
* The bounding rectangle of the curve excluding stroke width.
*
* @name Curve#getBounds
* @type Rectangle
* @bean
*/
/**
* The bounding rectangle of the curve including stroke width.
*
* @name Curve#getStrokeBounds
* @type Rectangle
* @bean
*/
/**
* The bounding rectangle of the curve including handles.
*
* @name Curve#getHandleBounds
* @type Rectangle
* @bean
*/
/**
* The rough bounding rectangle of the curve that is shure to include all of
* the drawing, including stroke width.
*
* @name Curve#getRoughBounds
* @type Rectangle
* @bean
* @ignore
*/
2013-06-27 20:13:00 -04:00
}), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'],
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without
// the need to create a Curve object first, as required by the code that
// finds path interesections.
function(name, index) {
this[name + 'At'] = function(offset, isParameter) {
var values = this.getValues();
return Curve.evaluate(values, isParameter
? offset : Curve.getParameterAt(values, offset, 0), index);
};
// Deprecated and undocumented, but keep around for now.
// TODO: Remove once enough time has passed (28.01.2013)
this[name] = function(parameter) {
return Curve.evaluate(this.getValues(), parameter, index);
};
},
/** @lends Curve# */{
/**
* Calculates the curve time parameter of the specified offset on the path,
* relative to the provided start parameter. If offset is a negative value,
* the parameter is searched to the left of the start parameter. If no start
* parameter is provided, a default of {@code 0} for positive values of
* {@code offset} and {@code 1} for negative values of {@code offset}.
* @param {Number} offset
* @param {Number} [start]
* @return {Number} the curve time parameter at the specified offset.
*/
getParameterAt: function(offset, start) {
return Curve.getParameterAt(this.getValues(), offset,
start !== undefined ? start : offset < 0 ? 1 : 0);
},
/**
* Returns the curve time parameter of the specified point if it lies on the
* curve, {@code null} otherwise.
* @param {Point} point the point on the curve.
* @return {Number} the curve time parameter of the specified point.
*/
getParameterOf: function(point) {
point = Point.read(arguments);
return Curve.getParameterOf(this.getValues(), point.x, point.y);
},
/**
* Calculates the curve location at the specified offset or curve time
* parameter.
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {CurveLocation} the curve location at the specified the offset.
*/
getLocationAt: function(offset, isParameter) {
if (!isParameter)
offset = this.getParameterAt(offset);
return new CurveLocation(this, offset);
},
/**
* Returns the curve location of the specified point if it lies on the
* curve, {@code null} otherwise.
* @param {Point} point the point on the curve.
* @return {CurveLocation} the curve location of the specified point.
*/
getLocationOf: function(point) {
// We need to use point to avoid minification issues and prevent method
// from turning into a bean (by removal of the point argument).
point = Point.read(arguments);
var t = this.getParameterOf(point);
return t != null ? new CurveLocation(this, t) : null;
},
getNearestLocation: function(point) {
point = Point.read(arguments);
var values = this.getValues(),
count = 100,
tolerance = Numerical.TOLERANCE,
minDist = Infinity,
minT = 0;
function refine(t) {
if (t >= 0 && t <= 1) {
var dist = point.getDistance(
Curve.evaluate(values, t, 0), true);
if (dist < minDist) {
minDist = dist;
minT = t;
return true;
}
}
}
for (var i = 0; i <= count; i++)
refine(i / count);
// Now iteratively refine solution until we reach desired precision.
var step = 1 / (count * 2);
while (step > tolerance) {
if (!refine(minT - step) && !refine(minT + step))
step /= 2;
}
var pt = Curve.evaluate(values, minT, 0);
2013-06-13 18:53:28 -04:00
return new CurveLocation(this, minT, pt, null, null, null,
2013-06-09 21:37:08 -04:00
point.getDistance(pt));
},
getNearestPoint: function(point) {
// We need to use point to avoid minification issues and prevent method
// from turning into a bean (by removal of the point argument).
point = Point.read(arguments);
return this.getNearestLocation(point).getPoint();
}
/**
* Returns the point on the curve at the specified offset.
*
* @name Curve#getPointAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Point} the point on the curve at the specified offset.
*/
/**
2013-04-20 20:26:51 -04:00
* Returns the tangent vector of the curve at the specified position.
*
* @name Curve#getTangentAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
2013-04-20 20:26:51 -04:00
* @return {Point} the tangent of the curve at the specified offset.
*/
/**
2013-04-20 20:26:51 -04:00
* Returns the normal vector of the curve at the specified position.
*
* @name Curve#getNormalAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Point} the normal of the curve at the specified offset.
2013-04-20 20:26:51 -04:00
*/
/**
* Returns the curvature vector of the curve at the specified position.
* Curvatures indicate how sharply a curve changes direction. A straight
* line has zero curvature where as a circle has a constant curvature.
2013-04-20 20:26:51 -04:00
*
* @name Curve#getCurvatureAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
2013-04-20 20:26:51 -04:00
* is a curve time parameter.
* @return {Point} the curvature of the curve at the specified offset.
*/
}),
new function() { // Scope for methods that require numerical integration
function getLengthIntegrand(v) {
// Calculate the coefficients of a Bezier derivative.
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
bx = 6 * (p1x + c2x) - 12 * c1x,
cx = 3 * (c1x - p1x),
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
by = 6 * (p1y + c2y) - 12 * c1y,
cy = 3 * (c1y - p1y);
return function(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
};
}
// Amount of integral evaluations for the interval 0 <= a < b <= 1
function getIterations(a, b) {
// Guess required precision based and size of range...
// TODO: There should be much better educated guesses for
// this. Also, what does this depend on? Required precision?
return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32)));
}
return {
statics: true,
getLength: function(v, a, b) {
if (a === undefined)
a = 0;
if (b === undefined)
b = 1;
var isZero = Numerical.isZero;
2013-06-13 18:53:28 -04:00
// See if the curve is linear by checking p1 == c1 and p2 == c2
if (isZero(v[0] - v[2]) && isZero(v[1] - v[3])
&& isZero(v[6] - v[4]) && isZero(v[7] - v[5])) {
// Straight line
var dx = v[6] - v[0], // p2x - p1x
dy = v[7] - v[1]; // p2y - p1y
return (b - a) * Math.sqrt(dx * dx + dy * dy);
}
var ds = getLengthIntegrand(v);
return Numerical.integrate(ds, a, b, getIterations(a, b));
},
getParameterAt: function(v, offset, start) {
if (offset === 0)
return start;
// See if we're going forward or backward, and handle cases
// differently
var forward = offset > 0,
a = forward ? start : 0,
b = forward ? 1 : start,
offset = Math.abs(offset),
// Use integrand to calculate both range length and part
// lengths in f(t) below.
ds = getLengthIntegrand(v),
// Get length of total range
rangeLength = Numerical.integrate(ds, a, b,
getIterations(a, b));
if (offset >= rangeLength)
return forward ? b : a;
// Use offset / rangeLength for an initial guess for t, to
// bring us closer:
var guess = offset / rangeLength,
length = 0;
// Iteratively calculate curve range lengths, and add them up,
// using integration precision depending on the size of the
// range. This is much faster and also more precise than not
// modifing start and calculating total length each time.
function f(t) {
var count = getIterations(start, t);
length += start < t
? Numerical.integrate(ds, start, t, count)
: -Numerical.integrate(ds, t, start, count);
start = t;
return length - offset;
}
return Numerical.findRoot(f, ds,
forward ? a + guess : b - guess, // Initial guess for x
a, b, 16, /*#=*/ Numerical.TOLERANCE);
}
};
}, new function() { // Scope for intersection using bezier fat-line clipping
2013-06-13 18:53:28 -04:00
function addLocation(locations, curve1, t1, point1, curve2, t2, point2) {
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point1.isClose(first._point, Numerical.EPSILON))
&& (!last || !point1.isClose(last._point, Numerical.EPSILON)))
2013-06-13 18:53:28 -04:00
locations.push(
new CurveLocation(curve1, t1, point1, curve2, t2, point2));
}
2013-05-26 20:06:23 -04:00
function addCurveIntersections(v1, v2, curve1, curve2, locations,
range1, range2, recursion) {
/*#*/ if (__options.fatline) {
// NOTE: range1 and range1 are only used for recusion
recursion = (recursion || 0) + 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this,
// but so far endless recursion happens only when there is no real
// intersection and the infinite fatline continue to intersect with the
// other curve outside its bounds!
if (recursion > 20)
return;
// Set up the parameter ranges.
range1 = range1 || [ 0, 1 ];
range2 = range2 || [ 0, 1 ];
// Get the clipped parts from the original curve, to avoid cumulative
// errors
var part1 = Curve.getPart(v1, range1[0], range1[1]),
part2 = Curve.getPart(v2, range2[0], range2[1]),
iteration = 0;
// Loop until both parameter range converge. We have to handle the
// degenerate case seperately, where fat-line clipping can become
// numerically unstable when one of the curves has converged to a point
// and the other hasn't.
2013-06-13 18:53:28 -04:00
while (iteration++ < 20) {
// First we clip v2 with v1's fat-line
var range,
intersects1 = clipFatLine(part1, part2, range = range2.slice()),
intersects2 = 0;
// Stop if there are no possible intersections
if (intersects1 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid
// cumulative errors
range2 = range;
part2 = Curve.getPart(v2, range2[0], range2[1]);
// Next we clip v1 with nuv2's fat-line
intersects2 = clipFatLine(part2, part1, range = range1.slice());
// Stop if there are no possible intersections
if (intersects2 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid
// cumulative errors
range1 = range;
part1 = Curve.getPart(v1, range1[0], range1[1]);
}
}
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if (intersects1 < 0 || intersects2 < 0) {
// Subdivide the curve which has converged the least from the
// original range [0,1], which would be the curve with the
// largest parameter range after clipping
if (range1[1] - range1[0] > range2[1] - range2[0]) {
// subdivide v1 and recurse
var t = (range1[0] + range1[1]) / 2;
2013-05-26 20:06:23 -04:00
addCurveIntersections(v1, v2, curve1, curve2, locations,
[ range1[0], t ], range2, recursion);
2013-05-26 20:06:23 -04:00
addCurveIntersections(v1, v2, curve1, curve2, locations,
[ t, range1[1] ], range2, recursion);
break;
} else {
// subdivide v2 and recurse
var t = (range2[0] + range2[1]) / 2;
2013-05-26 20:06:23 -04:00
addCurveIntersections(v1, v2, curve1, curve2, locations,
range1, [ range2[0], t ], recursion);
2013-05-26 20:06:23 -04:00
addCurveIntersections(v1, v2, curve1, curve2, locations,
range1, [ t, range2[1] ], recursion);
break;
}
}
// We need to bailout of clipping and try a numerically stable
2013-06-13 18:53:28 -04:00
// method if both of the parameter ranges have converged reasonably
// well (according to Numerical.TOLERANCE).
if (Math.abs(range1[1] - range1[0]) <= /*#=*/ Numerical.TOLERANCE &&
Math.abs(range2[1] - range2[0]) <= /*#=*/ Numerical.TOLERANCE) {
2013-06-09 21:37:08 -04:00
var t1 = (range1[0] + range1[1]) / 2,
t2 = (range2[0] + range2[1]) / 2;
2013-06-13 18:53:28 -04:00
addLocation(locations,
curve1, t1, Curve.evaluate(v1, t1, 0),
curve2, t2, Curve.evaluate(v2, t2, 0));
break;
}
}
/*#*/ } else { // !__options.fatline
var bounds1 = Curve.getBounds(v1),
bounds2 = Curve.getBounds(v2);
if (bounds1.touches(bounds2)) {
// See if both curves are flat enough to be treated as lines, either
// because they have no control points at all, or are "flat enough"
// If the curve was flat in a previous iteration, we don't need to
// recalculate since it does not need further subdivision then.
if ((Curve.isLinear(v1)
|| Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE))
&& (Curve.isLinear(v2)
|| Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE))) {
// See if the parametric equations of the lines interesct.
addLineIntersection(v1, v2, curve1, curve2, locations);
} else {
// Subdivide both curves, and see if they intersect.
// If one of the curves is flat already, no further subdivion
// is required.
var v1s = Curve.subdivide(v1),
v2s = Curve.subdivide(v2);
for (var i = 0; i < 2; i++)
for (var j = 0; j < 2; j++)
Curve.getIntersections(v1s[i], v2s[j], curve1, curve2,
locations);
}
}
return locations;
/*#*/ } // !__options.fatline
}
/*#*/ if (__options.fatline) {
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 section of the first curve, for which we will make a
* fat-line
* @param {Array} v2 section of the second curve; we will clip this curve
* with the fat-line of v1
* @param {Array} range2 the parameter range of v2
* @return {Number} 0: no Intersection, 1: one intersection, -1: more than
* one ntersection
*/
function clipFatLine(v1, v2, range2) {
// P = first curve, Q = second curve
var p0x = v1[0], p0y = v1[1], p1x = v1[2], p1y = v1[3],
p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7],
q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3],
q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7],
2013-05-26 19:58:49 -04:00
getSignedDistance = Line.getSignedDistance,
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0,
d2 = getSignedDistance(p0x, p0y, p3x, p3y, p2x, p2y) || 0,
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
dmin = factor * Math.min(0, d1, d2),
dmax = factor * Math.max(0, d1, d2),
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
// distance of Q from the baseline l of the fat-line, ti is equally
// spaced in [0, 1]
dq0 = getSignedDistance(p0x, p0y, p3x, p3y, q0x, q0y),
dq1 = getSignedDistance(p0x, p0y, p3x, p3y, q1x, q1y),
dq2 = getSignedDistance(p0x, p0y, p3x, p3y, q2x, q2y),
dq3 = getSignedDistance(p0x, p0y, p3x, p3y, q3x, q3y);
// Find the minimum and maximum distances from l, this is useful for
// checking whether the curves intersect with each other or not.
// If the fatlines don't overlap, we have no intersections!
if (dmin > Math.max(dq0, dq1, dq2, dq3)
|| dmax < Math.min(dq0, dq1, dq2, dq3))
return 0;
var hull = getConvexHull(dq0, dq1, dq2, dq3),
swap;
if (dq3 < dq0) {
swap = dmin;
dmin = dmax;
dmax = swap;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax): Portions of curve v2
// before tmin and after tmax can safely be clipped away.
var tmaxdmin = -Infinity,
tmin = Infinity,
tmax = -Infinity;
for (var i = 0, l = hull.length; i < l; i++) {
var p1 = hull[i],
p2 = hull[(i + 1) % l];
if (p2[1] < p1[1]) {
swap = p2;
p2 = p1;
p1 = swap;
}
var x1 = p1[0],
y1 = p1[1],
x2 = p2[0],
y2 = p2[1];
// We know that (x2 - x1) is never 0
var inv = (y2 - y1) / (x2 - x1);
if (dmin >= y1 && dmin <= y2) {
var ixdx = x1 + (dmin - y1) / inv;
if (ixdx < tmin)
tmin = ixdx;
if (ixdx > tmaxdmin)
tmaxdmin = ixdx;
}
if (dmax >= y1 && dmax <= y2) {
var ixdx = x1 + (dmax - y1) / inv;
if (ixdx > tmax)
tmax = ixdx;
if (ixdx < tmin)
tmin = 0;
}
}
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
if (tmin !== Infinity && tmax !== -Infinity) {
var min = Math.min(dmin, dmax),
max = Math.max(dmin, dmax);
if (dq3 > min && dq3 < max)
tmax = 1;
if (dq0 > min && dq0 < max)
tmin = 0;
if (tmaxdmin > tmax)
tmax = 1;
// tmin and tmax are within the range (0, 1). We need to project it
// to the original parameter range for v2.
var v2tmin = range2[0],
tdiff = range2[1] - v2tmin;
range2[0] = v2tmin + tmin * tdiff;
range2[1] = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of
// the original range, possibly we have multiple intersections.
// We need to subdivide one of the curves.
if ((tdiff - (range2[1] - range2[0])) / tdiff >= 0.2)
return 1;
}
// TODO: Try checking with a perpendicular fatline to see if the curves
// overlap if it is any faster than this
if (Curve.getBounds(v1).touches(Curve.getBounds(v2)))
return -1;
return 0;
}
/**
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t))
* The ti is equally spaced across [0..1] [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
* curve are already sorted in the X axis in the increasing order.
* Calculating convex-hull is much easier than a set of arbitrary points.
*/
function getConvexHull(dq0, dq1, dq2, dq3) {
var p0 = [ 0, dq0 ],
p1 = [ 1 / 3, dq1 ],
p2 = [ 2 / 3, dq2 ],
2013-05-26 20:52:05 -04:00
p3 = [ 1, dq3 ],
// Find signed distance of p1 and p2 from line [ p0, p3 ]
getSignedDistance = Line.getSignedDistance,
2013-05-26 20:52:05 -04:00
dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2);
// Check if p1 and p2 are on the same side of the line [ p0, p3 ]
2013-05-26 20:52:05 -04:00
if (dist1 * dist2 < 0) {
// p1 and p2 lie on different sides of [ p0, p3 ]. The hull is a
// quadrilateral and line [ p0, p3 ] is NOT part of the hull so we
2013-05-26 20:48:36 -04:00
// are pretty much done here.
2013-05-26 20:40:40 -04:00
return [ p0, p1, p3, p2 ];
}
2013-05-26 20:52:05 -04:00
// p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be
// a triangle or a quadrilateral and line [ p0, p3 ] is part of the
// hull. Check if the hull is a triangle or a quadrilateral.
var pmax, cross;
2013-05-26 20:52:05 -04:00
if (Math.abs(dist1) > Math.abs(dist2)) {
pmax = p1;
// apex is dq3 and the other apex point is dq0 vector
// dqapex->dqapex2 or base vector which is already part of the hull.
// cross = (vqa1a2X * vqa1MinY - vqa1a2Y * vqa1MinX)
// * (vqa1MaxX * vqa1MinY - vqa1MaxY * vqa1MinX)
cross = (dq3 - dq2 - (dq3 - dq0) / 3)
* (2 * (dq3 - dq2) - dq3 + dq1) / 3;
} else {
pmax = p2;
// apex is dq0 in this case, and the other apex point is dq3 vector
// dqapex->dqapex2 or base vector which is already part of the hull.
cross = (dq1 - dq0 + (dq0 - dq3) / 3)
* (-2 * (dq0 - dq1) + dq0 - dq2) / 3;
}
2013-05-26 20:48:36 -04:00
// Compare cross products of these vectors to determine if the point is
// in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral.
return cross < 0
// p2 is inside the triangle, hull is a triangle.
? [ p0, pmax, p3 ]
// Convexhull is a quadrilateral and we need all lines in the
// correct order where line [ p1, p3 ] is part of the hull.
: [ p0, p1, p2, p3 ];
}
/*#*/ } // __options.fatline
/**
* Intersections between curve and line becomes rather simple here mostly
* because of Numerical class. We can rotate the curve and line so that the
* line is on the X axis, and solve the implicit equations for the X axis
* and the curve.
*/
2013-06-13 18:53:28 -04:00
function addCurveLineIntersections(v1, v2, curve1, curve2, locations) {
var flip = Curve.isLinear(v1),
vc = flip ? v2 : v1,
vl = flip ? v1 : v2,
lx1 = vl[0], ly1 = vl[1],
lx2 = vl[6], ly2 = vl[7],
2013-10-29 16:20:19 -04:00
// Rotate both curve and line around l1 so that line is on x axis.
ldx = lx2 - lx1,
ldy = ly2 - ly1,
2013-10-29 16:20:19 -04:00
// Calculate angle to the x-axis (1, 0).
angle = Math.atan2(-ldy, ldx),
sin = Math.sin(angle),
cos = Math.cos(angle),
// (rlx1, rly1) = (0, 0)
rlx2 = ldx * cos - ldy * sin,
2013-10-29 16:20:19 -04:00
// The curve values for the rotated line.
rvl = [0, 0, 0, 0, rlx2, 0, rlx2, 0],
2013-10-29 16:20:19 -04:00
// Calculate the curve values of the rotated curve.
rvc = [];
for(var i = 0; i < 8; i += 2) {
var x = vc[i] - lx1,
y = vc[i + 1] - ly1;
rvc.push(
x * cos - y * sin,
y * cos + x * sin);
}
var roots = [],
count = Curve.solveCubic(rvc, 1, 0, roots, 0, 1);
// NOTE: count could be -1 for inifnite solutions, but that should only
// happen with lines, in which case we should not be here.
for (var i = 0; i < count; i++) {
2013-10-29 10:44:42 -04:00
var tc = roots[i],
x = Curve.evaluate(rvc, tc, 0).x;
2013-10-29 10:44:42 -04:00
// We do have a point on the infinite line. Check if it falls on
// the line *segment*.
if (x >= 0 && x <= rlx2) {
2013-10-29 16:20:19 -04:00
// Find the parameter of the intersection on the rotated line.
var tl = Curve.getParameterOf(rvl, x, 0),
2013-10-29 11:09:35 -04:00
t1 = flip ? tl : tc,
2013-10-29 10:44:42 -04:00
t2 = flip ? tc : tl;
addLocation(locations,
curve1, t1, Curve.evaluate(v1, t1, 0),
curve2, t2, Curve.evaluate(v2, t2, 0));
}
}
}
2013-05-26 20:06:23 -04:00
function addLineIntersection(v1, v2, curve1, curve2, locations) {
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7]);
// Passing null for parameter leads to lazy determination of parameter
// values in CurveLocation#getParameter() only once they are requested.
if (point)
addLocation(locations, curve1, null, point, curve2);
}
return { statics: /** @lends Curve */{
// We need to provide the original left curve reference to the
// #getIntersections() calls as it is required to create the resulting
// CurveLocation objects.
getIntersections: function(v1, v2, curve1, curve2, locations) {
var linear1 = Curve.isLinear(v1),
2013-12-01 17:48:59 -05:00
linear2 = Curve.isLinear(v2),
c1p1 = curve1.getPoint1(),
c1p2 = curve1.getPoint2(),
c2p1 = curve2.getPoint1(),
c2p2 = curve2.getPoint2(),
tolerance = /*#=*/ Numerical.TOLERANCE;
// Handle a special case where if both curves start or end at the
// same point, the same end-point case will be handled after we
// calculate other intersections within the curve.
if (c1p1.isClose(c2p1, tolerance))
addLocation(locations, curve1, 0, c1p1, curve2, 0, c1p1);
2013-12-01 17:48:59 -05:00
if (c1p1.isClose(c2p2, tolerance))
addLocation(locations, curve1, 0, c1p1, curve2, 1, c1p1);
// Determine the correct intersection method based on values of
// linear1 & 2:
(linear1 && linear2
2013-05-26 20:06:23 -04:00
? addLineIntersection
: linear1 || linear2
2013-05-26 20:06:23 -04:00
? addCurveLineIntersections
: addCurveIntersections)(v1, v2, curve1, curve2, locations);
2013-12-01 17:48:59 -05:00
// Handle the special case where curve1's end-point overlap with
// curve2's points.
if (c1p2.isClose(c2p1, tolerance))
addLocation(locations, curve1, 1, c1p2, curve2, 0, c1p2);
2013-12-01 17:48:59 -05:00
if (c1p2.isClose(c2p2, tolerance))
addLocation(locations, curve1, 1, c1p2, curve2, 1, c1p2);
return locations;
}
}};
});