paper.js/fatline/Intersect.js

427 lines
15 KiB
JavaScript
Raw Normal View History

new function() {
var MAX_RECURSION = 20;
var MAX_ITERATION = 20;
2013-05-14 14:27:04 -04:00
/**
* This method is analogous to paperjs#PathItem.getIntersections, but calls
* Curve.getIntersections2 instead.
2013-05-14 14:27:04 -04:00
*/
PathItem.prototype.getIntersections2 = function(path) {
// First check the bounds of the two paths. If they don't intersect,
// we don't need to iterate through their curves.
if (!this.getBounds().touches(path.getBounds()))
return [];
var locations = [],
curves1 = this.getCurves(),
curves2 = path.getCurves(),
length2 = curves2.length,
values2 = [];
for (var i = 0; i < length2; i++)
values2[i] = curves2[i].getValues();
for (var i = 0, l = curves1.length; i < l; i++) {
var curve1 = curves1[i],
values1 = curve1.getValues();
for (var j = 0; j < length2; j++)
Curve.getIntersections2(values1, values2[j], curve1, curves2[j],
locations);
}
return locations;
};
2013-05-14 14:27:04 -04:00
/**
* This method is analogous to paperjs#Curve.getIntersections
*/
Curve.getIntersections2 = function(v1, v2, curve1, curve2, locations) {
var linear1 = Curve.isLinear(v1),
linear2 = Curve.isLinear(v2);
// Determine the correct intersection method based on values of linear1 & 2:
(linear1 && linear2
? getLineLineIntersection
: linear1 || linear2
? getCurveLineIntersections
: getCurveIntersections)(v1, v2, curve1, curve2, locations);
return locations;
};
function addLocation(locations, curve1, parameter, point, curve2) {
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
locations.push(new CurveLocation(curve1, parameter, point, curve2));
}
2013-05-25 00:05:20 -04:00
function getCurveIntersections(v1, v2, curve1, curve2, locations,
range1, range2, recursion) {
2013-05-25 00:02:58 -04:00
// NOTE: range1 and range1 are only used for recusion
recursion = (recursion || 0) + 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this, but
// so far endless recursion happens only when there is no real intersection
// and the infinite fatline continue to intersect with the other curve
// outside its bounds!
if (recursion > MAX_RECURSION)
return;
// Set up the parameter ranges.
2013-05-25 00:02:58 -04:00
range1 = range1 || [ 0, 1 ];
range2 = range2 || [ 0, 1 ];
// Get the clipped parts from the original curve, to avoid cumulative errors
2013-05-25 00:05:20 -04:00
var part1 = Curve.getPart(v1, range1[0], range1[1]),
part2 = Curve.getPart(v2, range2[0], range2[1]),
iteration = 0;
// markCurve(part1, '#f0f', true);
// markCurve(part2, '#0ff', false);
// Loop until both parameter range converge. We have to handle the
// degenerate case seperately, where fat-line clipping can become
// numerically unstable when one of the curves has converged to a point and
// the other hasn't.
while (iteration++ < MAX_ITERATION
2013-05-25 00:02:58 -04:00
&& (Math.abs(range1[1] - range1[0]) > /*#=*/ Numerical.TOLERANCE
|| Math.abs(range2[1] - range2[0]) > /*#=*/ Numerical.TOLERANCE)) {
// First we clip v2 with v1's fat-line
2013-05-25 00:10:02 -04:00
var range,
intersects1 = clipFatLine(part1, part2, range = range2.slice()),
intersects2 = 0;
// Stop if there are no possible intersections
if (intersects1 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid cumulative
// errors ...and reuse some objects.
2013-05-25 00:02:58 -04:00
range2 = range;
2013-05-25 00:05:20 -04:00
part2 = Curve.getPart(v2, range2[0], range2[1]);
// markCurve(part2, '#0ff', false);
// Next we clip v1 with nuv2's fat-line
2013-05-25 00:05:20 -04:00
intersects2 = clipFatLine(part2, part1, range = range1.slice());
// Stop if there are no possible intersections
if (intersects2 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid
// cumulative errors
2013-05-25 00:02:58 -04:00
range1 = range;
2013-05-25 00:05:20 -04:00
part1 = Curve.getPart(v1, range1[0], range1[1]);
}
2013-05-25 00:05:20 -04:00
// markCurve(part1, '#f0f', true);
}
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if (intersects1 < 0 || intersects2 < 0) {
// Subdivide the curve which has converged the least from the
// original range [0,1], which would be the curve with the largest
// parameter range after clipping
2013-05-25 00:02:58 -04:00
if (range1[1] - range1[0] > range2[1] - range2[0]) {
// subdivide v1 and recurse
2013-05-25 00:02:58 -04:00
var t = (range1[0] + range1[1]) / 2;
getCurveIntersections(v1, v2, curve1, curve2, locations,
2013-05-25 00:02:58 -04:00
[ range1[0], t ], range2, recursion);
getCurveIntersections(v1, v2, curve1, curve2, locations,
2013-05-25 00:02:58 -04:00
[ t, range1[1] ], range2, recursion);
break;
} else {
// subdivide v2 and recurse
2013-05-25 00:02:58 -04:00
var t = (range2[0] + range2[1]) / 2;
getCurveIntersections(v1, v2, curve1, curve2, locations, range1,
[ range2[0], t ], recursion);
getCurveIntersections(v1, v2, curve1, curve2, locations, range1,
[ t, range2[1] ], recursion);
break;
}
}
// We need to bailout of clipping and try a numerically stable method if
// any of the following are true.
// 1. One of the parameter ranges is converged to a point.
// 2. Both of the parameter ranges have converged reasonably well
// (according to Numerical.TOLERANCE).
// 3. One of the parameter range is converged enough so that it is
// *flat enough* to calculate line curve intersection implicitly.
//
// Check if one of the parameter range has converged completely to a
// point. Now things could get only worse if we iterate more for the
// other curve to converge if it hasn't yet happened so.
var converged1 = Math.abs(range1[1] - range1[0]) < /*#=*/ Numerical.TOLERANCE,
converged2 = Math.abs(range2[1] - range2[0]) < /*#=*/ Numerical.TOLERANCE;
if (converged1 || converged2) {
addLocation(locations, curve1, null, converged1
2013-05-25 00:02:58 -04:00
? curve1.getPointAt(range1[0], true)
: curve2.getPointAt(range2[0], true), curve2);
break;
}
// see if either or both of the curves are flat enough to be treated
// as lines.
2013-05-25 00:05:20 -04:00
var flat1 = Curve.isFlatEnough(part1, /*#=*/ Numerical.TOLERANCE),
flat2 = Curve.isFlatEnough(part2, /*#=*/ Numerical.TOLERANCE);
if (flat1 && flat2) {
2013-05-25 00:05:20 -04:00
getLineLineIntersection(part1, part2, curve1, curve2, locations);
break;
}
if (flat1 || flat2) {
// Use curve line intersection method while specifying which
// curve to be treated as line
2013-05-25 00:05:20 -04:00
getCurveLineIntersections(part1, part2, curve1, curve2, locations,
flat1);
break;
}
}
}
2013-05-14 14:27:04 -04:00
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 section of the first curve, for which we will make a
* fat-line
* @param {Array} v2 section of the second curve; we will clip this curve with
* the fat-line of v1
2013-05-25 00:24:52 -04:00
* @param {Array} range2 the parameter range of v2
* @return {Number} 0: no Intersection, 1: one intersection, -1: more than one
* ntersection
2013-05-14 14:27:04 -04:00
*/
2013-05-25 00:02:58 -04:00
function clipFatLine(v1, v2, range2) {
2013-05-25 00:31:32 -04:00
// P = first curve, Q = second curve
var p0x = v1[0], p0y = v1[1], p1x = v1[2], p1y = v1[3],
p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7],
q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3],
q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7],
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0,
d2 = getSignedDistance(p0x, p0y, p3x, p3y, p2x, p2y) || 0,
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
dmin = factor * Math.min(0, d1, d2),
dmax = factor * Math.max(0, d1, d2),
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
// distance of Q from the baseline l of the fat-line, ti is equally
// spaced in [0, 1]
dq0 = getSignedDistance(p0x, p0y, p3x, p3y, q0x, q0y),
dq1 = getSignedDistance(p0x, p0y, p3x, p3y, q1x, q1y),
dq2 = getSignedDistance(p0x, p0y, p3x, p3y, q2x, q2y),
dq3 = getSignedDistance(p0x, p0y, p3x, p3y, q3x, q3y),
// Find the minimum and maximum distances from l, this is useful for
// checking whether the curves intersect with each other or not.
mindist = Math.min(dq0, dq1, dq2, dq3),
maxdist = Math.max(dq0, dq1, dq2, dq3);
2013-05-25 00:24:52 -04:00
// If the fatlines don't overlap, we have no intersections!
if (dmin > maxdist || dmax < mindist)
return 0;
2013-05-25 00:24:52 -04:00
var Dt = getConvexHull(dq0, dq1, dq2, dq3),
tmp;
if (dq3 < dq0) {
tmp = dmin;
dmin = dmax;
dmax = tmp;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax): Portions of curve v2 before
// tmin and after tmax can safely be clipped away
2013-05-25 00:24:52 -04:00
var tmaxdmin = -Infinity,
tmin = Infinity,
tmax = -Infinity;
for (var i = 0, l = Dt.length; i < l; i++) {
var Dtl = Dt[i],
dtlx1 = Dtl[0],
dtly1 = Dtl[1],
dtlx2 = Dtl[2],
dtly2 = Dtl[3];
if (dtly2 < dtly1) {
tmp = dtly2;
dtly2 = dtly1;
dtly1 = tmp;
tmp = dtlx2;
dtlx2 = dtlx1;
dtlx1 = tmp;
}
2013-05-25 00:24:52 -04:00
// We know that (dtlx2 - dtlx1) is never 0
2013-05-25 00:31:32 -04:00
var inv = (dtly2 - dtly1) / (dtlx2 - dtlx1);
if (dmin >= dtly1 && dmin <= dtly2) {
2013-05-25 00:31:32 -04:00
var ixdx = dtlx1 + (dmin - dtly1) / inv;
2013-05-25 00:24:52 -04:00
if (ixdx < tmin)
tmin = ixdx;
if (ixdx > tmaxdmin)
tmaxdmin = ixdx;
}
if (dmax >= dtly1 && dmax <= dtly2) {
2013-05-25 00:31:32 -04:00
var ixdx = dtlx1 + (dmax - dtly1) / inv;
2013-05-25 00:24:52 -04:00
if (ixdx > tmax)
tmax = ixdx;
if (ixdx < tmin)
tmin = 0;
}
}
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
if (tmin !== Infinity && tmax !== -Infinity) {
2013-05-25 00:24:52 -04:00
var mindmin = Math.min(dmin, dmax),
mindmax = Math.max(dmin, dmax);
if (dq3 > mindmin && dq3 < mindmax)
tmax = 1;
if (dq0 > mindmin && dq0 < mindmax)
tmin = 0;
if (tmaxdmin > tmax)
tmax = 1;
// tmin and tmax are within the range (0, 1). We need to project it to
// the original parameter range for v2.
2013-05-25 00:24:52 -04:00
var v2tmin = range2[0],
tdiff = range2[1] - v2tmin;
2013-05-25 00:02:58 -04:00
range2[0] = v2tmin + tmin * tdiff;
range2[1] = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of the
// original range, possibly we have multiple intersections. We need to
// subdivide one of the curves.
2013-05-25 00:02:58 -04:00
if ((tdiff - (range2[1] - range2[0])) / tdiff >= 0.2)
return 1;
}
// TODO: Try checking with a perpendicular fatline to see if the curves
// overlap if it is any faster than this
if (Curve.getBounds(v1).touches(Curve.getBounds(v2)))
return -1;
return 0;
2013-05-14 14:27:04 -04:00
}
/**
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
* The ti is equally spaced across [0..1] [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
* curve are already sorted in the X axis in the increasing order. Calculating
* convex-hull is much easier than a set of arbitrary points.
2013-05-14 14:27:04 -04:00
*/
function getConvexHull(dq0, dq1, dq2, dq3) {
2013-05-25 00:31:32 -04:00
var distq1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
2013-05-25 00:47:19 -04:00
distq2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2);
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line
// [0,dq0, 1,dq3]
if (distq1 * distq2 < 0) {
2013-05-25 00:31:32 -04:00
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]. The hull is a
// quadrilateral and line [0, q0, 1, q3] is NOT part of the hull so we
// are pretty much done here.
2013-05-25 00:47:19 -04:00
return [
[ 0, dq0, 1 / 3, dq1 ],
[ 1 / 3, dq1, 1, dq3 ],
[ 2 / 3, dq2, 0, dq0 ],
[ 1, dq3, 2 / 3, dq2 ]
];
2013-05-25 00:47:19 -04:00
}
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]. The hull can be
// a triangle or a quadrilateral and line [0, q0, 1, q3] is part of the
// hull. Check if the hull is a triangle or a quadrilateral.
var dqMaxX, dqMaxY, vqa1a2X, vqa1a2Y, vqa1MaxX, vqa1MaxY, vqa1MinX, vqa1MinY;
if (Math.abs(distq1) > Math.abs(distq2)) {
dqMaxX = 1 / 3;
dqMaxY = dq1;
// apex is dq3 and the other apex point is dq0 vector
// dqapex->dqapex2 or base vector which is already part of the hull.
vqa1a2X = 1;
vqa1a2Y = dq3 - dq0;
// vector dqapex->dqMax
vqa1MaxX = 2 / 3;
vqa1MaxY = dq3 - dq1;
// vector dqapex->dqmin
vqa1MinX = 1 / 3;
vqa1MinY = dq3 - dq2;
} else {
2013-05-25 00:47:19 -04:00
dqMaxX = 2 / 3;
dqMaxY = dq2;
// apex is dq0 in this case, and the other apex point is dq3 vector
// dqapex->dqapex2 or base vector which is already part of the hull.
vqa1a2X = -1;
vqa1a2Y = dq0 - dq3;
// vector dqapex->dqMax
vqa1MaxX = -2 / 3;
vqa1MaxY = dq0 - dq2;
// vector dqapex->dqmin
vqa1MinX = -1 / 3;
vqa1MinY = dq0 - dq1;
}
// Compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var a1a2_a1Min = vqa1a2X * vqa1MinY - vqa1a2Y * vqa1MinX,
a1Max_a1Min = vqa1MaxX * vqa1MinY - vqa1MaxY * vqa1MinX;
return a1a2_a1Min * a1Max_a1Min < 0
2013-05-25 00:31:32 -04:00
// Point [2/3, dq2] is inside the triangle, the hull is a triangle.
2013-05-25 00:47:19 -04:00
? [
[ 0, dq0, dqMaxX, dqMaxY ],
[ dqMaxX, dqMaxY, 1, dq3 ],
[ 1, dq3, 0, dq0 ]
2013-05-25 00:47:19 -04:00
]
// Convexhull is a quadrilateral and we need all lines in the
2013-05-25 00:31:32 -04:00
// correct order where line [0, q0, 1, q3] is part of the hull.
2013-05-25 00:47:19 -04:00
: [
[ 0, dq0, 1 / 3, dq1 ],
[ 1 / 3, dq1, 2 / 3, dq2 ],
[ 2 / 3, dq2, 1, dq3 ],
[ 1, dq3, 0, dq0 ]
];
2013-05-14 14:27:04 -04:00
}
// This is basically an "unrolled" version of #Line.getDistance() with sign
// May be a static method could be better!
function getSignedDistance(a1x, a1y, a2x, a2y, bx, by) {
var m = (a2y - a1y) / (a2x - a1x),
b = a1y - (m * a1x);
return (by - (m * bx) - b) / Math.sqrt(m * m + 1);
}
2013-05-14 14:27:04 -04:00
/**
* Intersections between curve and line becomes rather simple here mostly
* because of Numerical class. We can rotate the curve and line so that the line
2013-05-25 00:31:32 -04:00
* is on X axis, and solve the implicit equations for X axis and the curve.
2013-05-14 14:27:04 -04:00
*/
function getCurveLineIntersections(v1, v2, curve1, curve2, locations, flip) {
if (flip === undefined)
flip = Curve.isLinear(v1);
var vc = flip ? v2 : v1,
vl = flip ? v1 : v2,
l1x = vl[0], l1y = vl[1],
l2x = vl[6], l2y = vl[7],
// Rotate both the curve and line around l1 so that line is on x axis
lvx = l2x - l1x,
lvy = l2y - l1y,
// Angle with x axis (1, 0)
angle = Math.atan2(-lvy, lvx),
sin = Math.sin(angle),
cos = Math.cos(angle),
// (rl1x, rl1y) = (0, 0)
rl2x = lvx * cos - lvy * sin,
rl2y = lvy * cos + lvx * sin,
vcr = [];
for(var i = 0; i < 8; i += 2) {
var x = vc[i] - l1x,
y = vc[i + 1] - l1y;
vcr.push(
x * cos - y * sin,
y * cos + x * sin);
}
var roots = [],
count = Curve.solveCubic(vcr, 1, 0, roots);
// NOTE: count could theoretically be -1 for inifnite solutions, although
// that should only happen with lines, in which case we should not be here.
for (var i = 0; i < count; i++) {
var t = roots[i];
if (t >= 0 && t <= 1) {
var point = Curve.evaluate(vcr, t, true, 0);
// We do have a point on the infinite line. Check if it falls on the
// line *segment*.
if (point.x >= 0 && point.x <= rl2x)
addLocation(locations,
flip ? curve2 : curve1,
// The actual intersection point
t, Curve.evaluate(vc, t, true, 0),
flip ? curve1 : curve2);
}
}
}
2013-05-14 14:27:04 -04:00
function getLineLineIntersection(v1, v2, curve1, curve2, locations) {
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7], false);
// Passing null for parameter leads to lazy determination of parameter
// values in CurveLocation#getParameter() only once they are requested.
if (point)
addLocation(locations, curve1, null, point, curve2);
}
2013-05-24 21:00:28 -04:00
};