Minor optimizations

This commit is contained in:
hkrish 2013-05-14 20:27:04 +02:00
parent 0dc74280e6
commit 4e2680e605

View file

@ -1,496 +1,496 @@
var EPSILON = 10e-12;
var TOLERANCE = 10e-6;
var MAX_RECURSE = 10;
var MAX_ITERATE = 20;
/**
* This method is analogous to paperjs#PathItem.getIntersections
*/
function getIntersections2( path1, path2 ){
// First check the bounds of the two paths. If they don't intersect,
// we don't need to iterate through their curves.
if (!path1.getBounds().touches(path2.getBounds()))
return [];
var locations = [],
curves1 = path1.getCurves(),
curves2 = path2.getCurves(),
length2 = curves2.length,
values2 = [];
for (var i = 0; i < length2; i++)
values2[i] = curves2[i].getValues();
for (var i = 0, l = curves1.length; i < l; i++) {
var curve1 = curves1[i],
values1 = curve1.getValues();
for (var j = 0; j < length2; j++){
value2 = values2[j];
var v1Linear = Curve.isLinear(values1);
var v2Linear = Curve.isLinear(value2);
if( v1Linear && v2Linear ){
_getLineLineIntersection(values1, value2, curve1, curves2[j], locations);
} else if ( v1Linear || v2Linear ){
_getCurveLineIntersection(values1, value2, curve1, curves2[j], locations);
} else {
Curve.getIntersections2(values1, value2, curve1, curves2[j], locations);
}
}
}
return locations;
}
/**
* This method is analogous to paperjs#Curve.getIntersections
* @param {[type]} v1
* @param {[type]} v2
* @param {[type]} curve1
* @param {[type]} curve2
* @param {[type]} locations
* @param {[type]} _v1t - Only used for recusion
* @param {[type]} _v2t - Only used for recusion
*/
paper.Curve.getIntersections2 = function( v1, v2, curve1, curve2, locations, _v1t, _v2t, _recurseDepth ) {
_recurseDepth = _recurseDepth ? _recurseDepth + 1 : 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this, but
// so far endless recursion happens only when there is no real intersection and
// the infinite fatline continue to intersect with the other curve outside its bounds!
if( _recurseDepth > MAX_RECURSE ) return;
// cache the original parameter range.
_v1t = _v1t || { t1: 0, t2: 1 };
_v2t = _v2t || { t1: 0, t2: 1 };
var v1t = { t1: _v1t.t1, t2: _v1t.t2 };
var v2t = { t1: _v2t.t1, t2: _v2t.t2 };
// Get the clipped parts from the original curve, to avoid cumulative errors
var _v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
var _v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
// markCurve( _v1, '#f0f', true );
// markCurve( _v2, '#0ff', false );
var nuT, parts, tmpt = { t1:null, t2:null }, iterate = 0;
// Loop until both parameter range converge. We have to handle the degenerate case
// seperately, where fat-line clipping can become numerically unstable when one of the
// curves has converged to a point and the other hasn't.
while( iterate < MAX_ITERATE &&
( Math.abs(v1t.t2 - v1t.t1) > TOLERANCE || Math.abs(v2t.t2 - v2t.t1) > TOLERANCE ) ){
++iterate;
// First we clip v2 with v1's fat-line
tmpt.t1 = v2t.t1; tmpt.t2 = v2t.t2;
var intersects1 = _clipBezierFatLine( _v1, _v2, tmpt );
// Stop if there are no possible intersections
if( intersects1 === 0 ){
return;
} else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
// ...and reuse some objects.
v2t.t1 = tmpt.t1; v2t.t2 = tmpt.t2;
_v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
}
// markCurve( _v2, '#0ff', false );
// Next we clip v1 with nuv2's fat-line
tmpt.t1 = v1t.t1; tmpt.t2 = v1t.t2;
var intersects2 = _clipBezierFatLine( _v2, _v1, tmpt );
// Stop if there are no possible intersections
if( intersects2 === 0 ){
return;
}else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
v1t.t1 = tmpt.t1; v1t.t2 = tmpt.t2;
_v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
}
// markCurve( _v1, '#f0f', true );
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if( intersects1 < 0 || intersects2 < 0 ){
// Subdivide the curve which has converged the least from the original range [0,1],
// which would be the curve with the largest parameter range after clipping
if( v1t.t2 - v1t.t1 > v2t.t2 - v2t.t1 ){
// subdivide _v1 and recurse
nuT = ( _v1t.t1 + _v1t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: _v1t.t1, t2: nuT }, _v2t, _recurseDepth );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: nuT, t2: _v1t.t2 }, _v2t, _recurseDepth );
return;
} else {
// subdivide _v2 and recurse
nuT = ( _v2t.t1 + _v2t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: _v2t.t1, t2: nuT }, _recurseDepth );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: nuT, t2: _v2t.t2 }, _recurseDepth );
return;
}
}
// We need to bailout of clipping and try a numerically stable method if
// any of the following are true.
// 1. One of the parameter ranges is converged to a point.
// 2. Both of the parameter ranges have converged reasonably well ( according to TOLERENCE ).
// 3. One of the parameter range is converged enough so that it is *flat enough* to
// calculate line curve intersection implicitly.
//
// Check if one of the parameter range has converged completely to a point.
// Now things could get only worse if we iterate more for the other
// curve to converge if it hasn't yet happened so.
if( Math.abs(v1t.t2 - v1t.t1) < EPSILON ){
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
return;
}else if( Math.abs(v2t.t2 - v2t.t1) < EPSILON ){
locations.push(new CurveLocation(curve1, null, curve2.getPointAt(v1t.t1, true), curve2));
return;
}
// Check to see if both parameter ranges have converged or else,
// see if either or both of the curves are flat enough to be treated as lines
if( Math.abs(v1t.t2 - v1t.t1) <= TOLERANCE || Math.abs(v2t.t2 - v2t.t1) <= TOLERANCE ){
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
return;
} else {
var curve1Flat = Curve.isFlatEnough( _v1, /*#=*/ TOLERANCE );
var curve2Flat = Curve.isFlatEnough( _v2, /*#=*/ TOLERANCE );
if ( curve1Flat && curve2Flat ) {
_getLineLineIntersection( _v1, _v2, curve1, curve2, locations );
return;
} else if( curve1Flat || curve2Flat ){
// Use curve line intersection method while specifying which curve to be treated as line
_getCurveLineIntersection( _v1, _v2, curve1, curve2, locations, curve1Flat );
return;
}
}
}
};
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 - Section of the first curve, for which we will make a fat-line
* @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v1
* @param {Object} v2t - The parameter range of v2
* @return {number} -> 0 -no Intersection, 1 -one intersection, -1 -more than one intersection
*/
function _clipBezierFatLine( v1, v2, v2t ){
// first curve, P
var p0x = v1[0], p0y = v1[1], p3x = v1[6], p3y = v1[7];
var p1x = v1[2], p1y = v1[3], p2x = v1[4], p2y = v1[5];
// second curve, Q
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7];
var q1x = v2[2], q1y = v2[3], q2x = v2[4], q2y = v2[5];
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
var d1 = _getSignedDist( p0x, p0y, p3x, p3y, p1x, p1y ) || 0;
var d2 = _getSignedDist( p0x, p0y, p3x, p3y, p2x, p2y ) || 0;
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 0.4444444444444444 * Math.min( 0, d1, d2 );
dmax = 0.4444444444444444 * Math.max( 0, d1, d2 );
}
// Calculate non-parametric bezier curve D(ti, di(t)) -
// di(t) is the distance of Q from the baseline l of the fat-line,
// ti is equally spaced in [0,1]
var dq0 = _getSignedDist( p0x, p0y, p3x, p3y, q0x, q0y );
var dq1 = _getSignedDist( p0x, p0y, p3x, p3y, q1x, q1y );
var dq2 = _getSignedDist( p0x, p0y, p3x, p3y, q2x, q2y );
var dq3 = _getSignedDist( p0x, p0y, p3x, p3y, q3x, q3y );
// Find the minimum and maximum distances from l,
// this is useful for checking whether the curves intersect with each other or not.
var mindist = Math.min( dq0, dq1, dq2, dq3 );
var maxdist = Math.max( dq0, dq1, dq2, dq3 );
// If the fatlines don't overlap, we have no intersections!
if( dmin > maxdist || dmax < mindist ){
return 0;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
var Dt = _convexhull( dq0, dq1, dq2, dq3 );
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax):
// Portions of curve v2 before tmin and after tmax can safely be clipped away
// TODO: try to calculate tmin and tmax directly here
var tmindmin = Infinity, tmaxdmin = -Infinity,
tmindmax = Infinity, tmaxdmax = -Infinity, ixd, ixdx, i, len;
// var dmina = [0, dmin, 2, dmin];
// var dmaxa = [0, dmax, 2, dmax];
for (i = 0, len = Dt.length; i < len; i++) {
var Dtl = Dt[i];
// ixd = _intersectLines( Dtl, dmina);
// TODO: Optimize: Avaoid creating point objects in Line.intersect?! - speeds up by 30%!
ixd = Line.intersectRaw( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmin, 2, dmin, false);
if( ixd ){
ixdx = ixd[0];
tmindmin = ( ixdx < tmindmin )? ixdx : tmindmin;
tmaxdmin = ( ixdx > tmaxdmin )? ixdx : tmaxdmin;
}
// ixd = _intersectLines( Dtl, dmaxa);
ixd = Line.intersectRaw( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmax, 2, dmax, false);
if( ixd ){
ixdx = ixd[0];
tmindmax = ( ixdx < tmindmax )? ixdx : tmindmax;
tmaxdmax = ( ixdx > tmaxdmax )? ixdx : tmaxdmax;
}
}
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
var tmin, tmax;
if( dq3 > dq0 ){
// if dmin or dmax doesnot intersect with the convexhull, reset the parameter limits
if( tmindmin === Infinity ) tmindmin = 1e-11;
if( tmaxdmin === -Infinity ) tmaxdmin = 1e-11;
if( tmindmax === Infinity ) tmindmax = 0.9999999999999999;
if( tmaxdmax === -Infinity ) tmaxdmax = 0.9999999999999999;
tmin = Math.min( tmindmin, tmaxdmin );
tmax = Math.max( tmindmax, tmaxdmax );
if( Math.min( tmindmax, tmaxdmax ) < tmin )
tmin = 0;
if( Math.max( tmindmin, tmaxdmin ) > tmax )
tmax = 1;
}else{
// if dmin or dmax doesnot intersect with the convexhull, reset the parameter limits
if( tmindmin === Infinity ) tmindmin = 0.9999999999999999;
if( tmaxdmin === -Infinity ) tmaxdmin = 0.9999999999999999;
if( tmindmax === Infinity ) tmindmax = 1e-11;
if( tmaxdmax === -Infinity ) tmaxdmax = 1e-11;
tmax = Math.max( tmindmin, tmaxdmin );
tmin = Math.min( tmindmax, tmaxdmax );
if( Math.min( tmindmin, tmaxdmin ) < tmin )
tmin = 0;
if( Math.max( tmindmax, tmaxdmax ) > tmax )
tmax = 1;
}
// Debug: Plot the non-parametric graph and hull
// plotD_vs_t( 500, 110, Dt, [dq0, dq1, dq2, dq3], v1, dmin, dmax, tmin, tmax, 1.0 / ( tmax - tmin + 0.3 ) )
if( tmin === 0.0 && tmax === 1.0 ){
return 0;
}
// tmin and tmax are within the range (0, 1). We need to project it to the original
// parameter range for v2.
var v2tmin = v2t.t1;
var tdiff = ( v2t.t2 - v2tmin );
v2t.t1 = v2tmin + tmin * tdiff;
v2t.t2 = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of the original range,
// possibly we have multiple intersections. We need to subdivide one of the curves.
if( (tdiff - ( v2t.t2 - v2t.t1 ))/tdiff < 0.2 ){
return -1;
}
return 1;
}
/**
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
* The ti is equally spaced across [0..1] [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the curve are
* already sorted in the X axis in the increasing order. Calculating convex-hull is
* much easier than a set of arbitrary points.
*/
function _convexhull( dq0, dq1, dq2, dq3 ){
var distq1 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.3333333333333333, dq1 );
var distq2 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.6666666666666666, dq2 );
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3]
if( distq1 * distq2 < 0 ) {
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
// Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of the convexhull
// so we are pretty much done here.
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 1.0, dq3 ],
[ 0.6666666666666666, dq2, 0.0, dq0 ],
[ 1.0, dq3, 0.6666666666666666, dq2 ]
];
} else {
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]
// Convexhull can be a triangle or a quadrilateral and
// line [0, q0, 1, q3] is part of the convexhull.
// Check if the hull is a triangle or a quadrilateral
var dqmin, dqmax, dqapex1, dqapex2;
distq1 = Math.abs(distq1);
distq2 = Math.abs(distq2);
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
if( distq1 > distq2 ){
dqmin = [ 0.6666666666666666, dq2 ];
dqmax = [ 0.3333333333333333, dq1 ];
// apex is dq3 and the other apex point is dq0
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = 1.0, vqa1a2y = dq3 - dq0;
// vector dqapex->dqmax
vqa1Maxx = 0.6666666666666666, vqa1Maxy = dq3 - dq1;
// vector dqapex->dqmin
vqa1Minx = 0.3333333333333333, vqa1Miny = dq3 - dq2;
} else {
dqmin = [ 0.3333333333333333, dq1 ];
dqmax = [ 0.6666666666666666, dq2 ];
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = -1.0, vqa1a2y = dq0 - dq3;
// vector dqapex->dqmax
vqa1Maxx = -0.6666666666666666, vqa1Maxy = dq0 - dq2;
// vector dqapex->dqmin
vqa1Minx = -0.3333333333333333, vqa1Miny = dq0 - dq1;
}
// compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
if( vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0 ){
// Point [2/3, dq2] is inside the triangle and the convex hull is a triangle
Dt = [
[ 0.0, dq0, dqmax[0], dqmax[1] ],
[ dqmax[0], dqmax[1], 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
} else {
// Convexhull is a quadrilateral and we need all lines in the correct order where
// line [0, q0, 1, q3] is part of the convex hull
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 0.6666666666666666, dq2 ],
[ 0.6666666666666666, dq2, 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
}
}
return Dt;
}
function drawFatline( v1 ) {
function signum(num) {
return ( num > 0 )? 1 : ( num < 0 )? -1 : 0;
}
var l = new Line( [v1[0], v1[1]], [v1[6], v1[7]], false );
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
var d1 = l.getSide( p1 ) * l.getDistance( p1 ) || 0;
var d2 = l.getSide( p2 ) * l.getDistance( p2 ) || 0;
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
}
var ll = new Path.Line( v1[0], v1[1], v1[6], v1[7] );
window.__p3.push( ll );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9, 0.8);
var lp1 = ll.segments[0].point;
var lp2 = ll.segments[1].point;
var pm = l.vector, pm1 = pm.rotate( signum( dmin ) * -90 ), pm2 = pm.rotate( signum( dmax ) * -90 );
var p11 = lp1.add( pm1.normalize( Math.abs(dmin) ) );
var p12 = lp2.add( pm1.normalize( Math.abs(dmin) ) );
var p21 = lp1.add( pm2.normalize( Math.abs(dmax) ) );
var p22 = lp2.add( pm2.normalize( Math.abs(dmax) ) );
window.__p3.push( new Path.Line( p11, p12 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
window.__p3.push( new Path.Line( p21, p22 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
}
function plotD_vs_t( x, y, arr, arr2, v, dmin, dmax, tmin, tmax, yscale, tvalue ){
yscale = yscale || 1;
new Path.Line( x, y-100, x, y+100 ).style.strokeColor = '#aaa';
new Path.Line( x, y, x + 200, y ).style.strokeColor = '#aaa';
var clr = (tvalue)? '#a00' : '#00a';
if( window.__p3 ) window.__p3.map(function(a){a.remove();});
window.__p3 = [];
drawFatline( v );
window.__p3.push( new Path.Line( x, y + dmin * yscale, x + 200, y + dmin * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x, y + dmax * yscale, x + 200, y + dmax * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x + tmin * 190, y-100, x + tmin * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
window.__p3.push( new Path.Line( x + tmax * 190, y-100, x + tmax * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
for (var i = 0; i < arr.length; i++) {
window.__p3.push( new Path.Line( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ),
new Point( x + arr[i][2] * 190, y + arr[i][3] * yscale ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#999';
}
var pnt = [];
var arr2x = [ 0.0, 0.333333333, 0.6666666666, 1.0 ];
for (var i = 0; i < arr2.length; i++) {
pnt.push( new Point( x + arr2x[i] * 190, y + arr2[i] * yscale ) );
window.__p3.push( new Path.Circle( pnt[pnt.length-1], 2 ) );
window.__p3[window.__p3.length-1].style.fillColor = '#000'
}
// var pth = new Path( pnt[0], pnt[1], pnt[2], pnt[3] );
// pth.closed = true;
window.__p3.push( new Path( new Segment(pnt[0], null, pnt[1].subtract(pnt[0])), new Segment( pnt[3], pnt[2].subtract(pnt[3]), null ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
view.draw();
}
// This is basically an "unrolled" version of #Line.getDistance() with sign
// May be a static method could be better!
var _getSignedDist = function( a1x, a1y, a2x, a2y, bx, by ){
var vx = a2x - a1x, vy = a2y - a1y;
var m = vy / vx, b = a1y - ( m * a1x );
return ( by - ( m * bx ) - b ) / Math.sqrt( m*m + 1 );
};
/**
* Intersections between curve and line becomes rather simple here mostly
* because of paperjs Numerical class. We can rotate the curve and line so that
* the line is on X axis, and solve the implicit equations for X axis and the curve
*/
var _getCurveLineIntersection = function( v1, v2, curve1, curve2, locations, _other ){
var i, root, point, vc = v1, vl = v2;
var other = ( _other === undefined )? Curve.isLinear( v1 ) : _other;
if( other ){
vl = v1;
vc = v2;
}
var l1x = vl[0], l1y = vl[1], l2x = vl[6], l2y = vl[7];
// rotate both the curve and line around l1 so that line is on x axis
var lvx = l2x - l1x, lvy = l2y - l1y;
// Angle with x axis (1, 0)
var angle = Math.atan2( -lvy, lvx ), sina = Math.sin( angle ), cosa = Math.cos( angle );
// rotated line and curve values
// (rl1x, rl1y) = (0, 0)
var rl2x = lvx * cosa - lvy * sina, rl2y = lvy * cosa + lvx * sina;
var rvc = [];
for( i=0; i<8; i+=2 ){
var vcx = vc[i] - l1x, vcy = vc[i+1] - l1y;
rvc.push( vcx * cosa - vcy * sina );
rvc.push( vcy * cosa + vcx * sina );
}
var roots = [];
Curve.solveCubic(rvc, 1, 0, roots);
i = roots.length;
while( i-- ){
root = roots[i];
if( root >= 0 && root <= 1 ){
point = Curve.evaluate(rvc, root, true, 0);
// We do have a point on the infinite line. Check if it falls on the line *segment*.
if( point.x >= 0 && point.x <= rl2x ){
// The actual intersection point
point = Curve.evaluate(vc, root, true, 0);
if( other ) root = null;
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
locations.push( new CurveLocation( curve1, root, point, curve2 ) );
}
}
}
};
var _getLineLineIntersection = function( v1, v2, curve1, curve2, locations ){
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7], false);
if (point) {
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
// Passing null for parameter leads to lazy determination
// of parameter values in CurveLocation#getParameter()
// only once they are requested.
locations.push(new CurveLocation(curve1, null, point, curve2));
}
};
var EPSILON = 10e-12;
var TOLERANCE = 10e-6;
var MAX_RECURSE = 10;
var MAX_ITERATE = 20;
/**
* This method is analogous to paperjs#PathItem.getIntersections
*/
function getIntersections2( path1, path2 ){
// First check the bounds of the two paths. If they don't intersect,
// we don't need to iterate through their curves.
if (!path1.getBounds().touches(path2.getBounds()))
return [];
var locations = [],
curves1 = path1.getCurves(),
curves2 = path2.getCurves(),
length2 = curves2.length,
values2 = [];
for (var i = 0; i < length2; i++)
values2[i] = curves2[i].getValues();
for (var i = 0, l = curves1.length; i < l; i++) {
var curve1 = curves1[i],
values1 = curve1.getValues();
for (var j = 0; j < length2; j++){
value2 = values2[j];
var v1Linear = Curve.isLinear(values1);
var v2Linear = Curve.isLinear(value2);
if( v1Linear && v2Linear ){
_getLineLineIntersection(values1, value2, curve1, curves2[j], locations);
} else if ( v1Linear || v2Linear ){
_getCurveLineIntersection(values1, value2, curve1, curves2[j], locations);
} else {
Curve.getIntersections2(values1, value2, curve1, curves2[j], locations);
}
}
}
return locations;
}
/**
* This method is analogous to paperjs#Curve.getIntersections
* @param {[type]} v1
* @param {[type]} v2
* @param {[type]} curve1
* @param {[type]} curve2
* @param {[type]} locations
* @param {[type]} _v1t - Only used for recusion
* @param {[type]} _v2t - Only used for recusion
*/
paper.Curve.getIntersections2 = function( v1, v2, curve1, curve2, locations, _v1t, _v2t, _recurseDepth ) {
_recurseDepth = _recurseDepth ? _recurseDepth + 1 : 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this, but
// so far endless recursion happens only when there is no real intersection and
// the infinite fatline continue to intersect with the other curve outside its bounds!
if( _recurseDepth > MAX_RECURSE ) return;
// cache the original parameter range.
_v1t = _v1t || { t1: 0, t2: 1 };
_v2t = _v2t || { t1: 0, t2: 1 };
var v1t = { t1: _v1t.t1, t2: _v1t.t2 };
var v2t = { t1: _v2t.t1, t2: _v2t.t2 };
// Get the clipped parts from the original curve, to avoid cumulative errors
var _v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
var _v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
// markCurve( _v1, '#f0f', true );
// markCurve( _v2, '#0ff', false );
var nuT, parts, tmpt = { t1:null, t2:null }, iterate = 0;
// Loop until both parameter range converge. We have to handle the degenerate case
// seperately, where fat-line clipping can become numerically unstable when one of the
// curves has converged to a point and the other hasn't.
while( iterate < MAX_ITERATE &&
( Math.abs(v1t.t2 - v1t.t1) > TOLERANCE || Math.abs(v2t.t2 - v2t.t1) > TOLERANCE ) ){
++iterate;
// First we clip v2 with v1's fat-line
tmpt.t1 = v2t.t1; tmpt.t2 = v2t.t2;
var intersects1 = _clipBezierFatLine( _v1, _v2, tmpt );
// Stop if there are no possible intersections
if( intersects1 === 0 ){
return;
} else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
// ...and reuse some objects.
v2t.t1 = tmpt.t1; v2t.t2 = tmpt.t2;
_v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
}
// markCurve( _v2, '#0ff', false );
// Next we clip v1 with nuv2's fat-line
tmpt.t1 = v1t.t1; tmpt.t2 = v1t.t2;
var intersects2 = _clipBezierFatLine( _v2, _v1, tmpt );
// Stop if there are no possible intersections
if( intersects2 === 0 ){
return;
}else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
v1t.t1 = tmpt.t1; v1t.t2 = tmpt.t2;
_v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
}
// markCurve( _v1, '#f0f', true );
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if( intersects1 < 0 || intersects2 < 0 ){
// Subdivide the curve which has converged the least from the original range [0,1],
// which would be the curve with the largest parameter range after clipping
if( v1t.t2 - v1t.t1 > v2t.t2 - v2t.t1 ){
// subdivide _v1 and recurse
nuT = ( _v1t.t1 + _v1t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: _v1t.t1, t2: nuT }, _v2t, _recurseDepth );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: nuT, t2: _v1t.t2 }, _v2t, _recurseDepth );
return;
} else {
// subdivide _v2 and recurse
nuT = ( _v2t.t1 + _v2t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: _v2t.t1, t2: nuT }, _recurseDepth );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: nuT, t2: _v2t.t2 }, _recurseDepth );
return;
}
}
// We need to bailout of clipping and try a numerically stable method if
// any of the following are true.
// 1. One of the parameter ranges is converged to a point.
// 2. Both of the parameter ranges have converged reasonably well ( according to TOLERENCE ).
// 3. One of the parameter range is converged enough so that it is *flat enough* to
// calculate line curve intersection implicitly.
//
// Check if one of the parameter range has converged completely to a point.
// Now things could get only worse if we iterate more for the other
// curve to converge if it hasn't yet happened so.
if( Math.abs(v1t.t2 - v1t.t1) < EPSILON ){
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
return;
}else if( Math.abs(v2t.t2 - v2t.t1) < EPSILON ){
locations.push(new CurveLocation(curve1, null, curve2.getPointAt(v1t.t1, true), curve2));
return;
}
// Check to see if both parameter ranges have converged or else,
// see if either or both of the curves are flat enough to be treated as lines
if( Math.abs(v1t.t2 - v1t.t1) <= TOLERANCE || Math.abs(v2t.t2 - v2t.t1) <= TOLERANCE ){
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
return;
} else {
var curve1Flat = Curve.isFlatEnough( _v1, /*#=*/ TOLERANCE );
var curve2Flat = Curve.isFlatEnough( _v2, /*#=*/ TOLERANCE );
if ( curve1Flat && curve2Flat ) {
_getLineLineIntersection( _v1, _v2, curve1, curve2, locations );
return;
} else if( curve1Flat || curve2Flat ){
// Use curve line intersection method while specifying which curve to be treated as line
_getCurveLineIntersection( _v1, _v2, curve1, curve2, locations, curve1Flat );
return;
}
}
}
};
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 - Section of the first curve, for which we will make a fat-line
* @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v1
* @param {Object} v2t - The parameter range of v2
* @return {number} -> 0 -no Intersection, 1 -one intersection, -1 -more than one intersection
*/
function _clipBezierFatLine( v1, v2, v2t ){
// first curve, P
var p0x = v1[0], p0y = v1[1], p3x = v1[6], p3y = v1[7];
var p1x = v1[2], p1y = v1[3], p2x = v1[4], p2y = v1[5];
// second curve, Q
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7];
var q1x = v2[2], q1y = v2[3], q2x = v2[4], q2y = v2[5];
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
var d1 = _getSignedDist( p0x, p0y, p3x, p3y, p1x, p1y ) || 0;
var d2 = _getSignedDist( p0x, p0y, p3x, p3y, p2x, p2y ) || 0;
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 0.4444444444444444 * Math.min( 0, d1, d2 );
dmax = 0.4444444444444444 * Math.max( 0, d1, d2 );
}
// Calculate non-parametric bezier curve D(ti, di(t)) -
// di(t) is the distance of Q from the baseline l of the fat-line,
// ti is equally spaced in [0,1]
var dq0 = _getSignedDist( p0x, p0y, p3x, p3y, q0x, q0y );
var dq1 = _getSignedDist( p0x, p0y, p3x, p3y, q1x, q1y );
var dq2 = _getSignedDist( p0x, p0y, p3x, p3y, q2x, q2y );
var dq3 = _getSignedDist( p0x, p0y, p3x, p3y, q3x, q3y );
// Find the minimum and maximum distances from l,
// this is useful for checking whether the curves intersect with each other or not.
var mindist = Math.min( dq0, dq1, dq2, dq3 );
var maxdist = Math.max( dq0, dq1, dq2, dq3 );
// If the fatlines don't overlap, we have no intersections!
if( dmin > maxdist || dmax < mindist ){
return 0;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
var Dt = _convexhull( dq0, dq1, dq2, dq3 );
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax):
// Portions of curve v2 before tmin and after tmax can safely be clipped away
// TODO: try to calculate tmin and tmax directly here
var tmindmin = Infinity, tmaxdmin = -Infinity,
tmindmax = Infinity, tmaxdmax = -Infinity, ixd, ixdx, i, len;
// var dmina = [0, dmin, 2, dmin];
// var dmaxa = [0, dmax, 2, dmax];
for (i = 0, len = Dt.length; i < len; i++) {
var Dtl = Dt[i];
// ixd = _intersectLines( Dtl, dmina);
// TODO: Optimize: Avaoid creating point objects in Line.intersect?! - speeds up by 30%!
ixd = Line.intersectRaw( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmin, 2, dmin, false);
if( ixd ){
ixdx = ixd[0];
tmindmin = ( ixdx < tmindmin )? ixdx : tmindmin;
tmaxdmin = ( ixdx > tmaxdmin )? ixdx : tmaxdmin;
}
// ixd = _intersectLines( Dtl, dmaxa);
ixd = Line.intersectRaw( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmax, 2, dmax, false);
if( ixd ){
ixdx = ixd[0];
tmindmax = ( ixdx < tmindmax )? ixdx : tmindmax;
tmaxdmax = ( ixdx > tmaxdmax )? ixdx : tmaxdmax;
}
}
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
var tmin, tmax;
if( dq3 > dq0 ){
// if dmin or dmax doesnot intersect with the convexhull, reset the parameter limits
if( tmindmin === Infinity ) tmindmin = 0;
if( tmaxdmin === -Infinity ) tmaxdmin = 0;
if( tmindmax === Infinity ) tmindmax = 1;
if( tmaxdmax === -Infinity ) tmaxdmax =1;
tmin = Math.min( tmindmin, tmaxdmin );
tmax = Math.max( tmindmax, tmaxdmax );
if( Math.min( tmindmax, tmaxdmax ) < tmin )
tmin = 0;
if( Math.max( tmindmin, tmaxdmin ) > tmax )
tmax = 1;
}else{
// if dmin or dmax doesnot intersect with the convexhull, reset the parameter limits
if( tmindmin === Infinity ) tmindmin =1;
if( tmaxdmin === -Infinity ) tmaxdmin =1;
if( tmindmax === Infinity ) tmindmax = 0;
if( tmaxdmax === -Infinity ) tmaxdmax = 0;
tmax = Math.max( tmindmin, tmaxdmin );
tmin = Math.min( tmindmax, tmaxdmax );
if( Math.min( tmindmin, tmaxdmin ) < tmin )
tmin = 0;
if( Math.max( tmindmax, tmaxdmax ) > tmax )
tmax = 1;
}
// Debug: Plot the non-parametric graph and hull
// plotD_vs_t( 500, 110, Dt, [dq0, dq1, dq2, dq3], v1, dmin, dmax, tmin, tmax, 1.0 / ( tmax - tmin + 0.3 ) )
// if( tmin === 0.0 && tmax === 1.0 ){
// return 0;
// }
// tmin and tmax are within the range (0, 1). We need to project it to the original
// parameter range for v2.
var v2tmin = v2t.t1;
var tdiff = ( v2t.t2 - v2tmin );
v2t.t1 = v2tmin + tmin * tdiff;
v2t.t2 = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of the original range,
// possibly we have multiple intersections. We need to subdivide one of the curves.
if( (tdiff - ( v2t.t2 - v2t.t1 ))/tdiff < 0.2 ){
return -1;
}
return 1;
}
/**
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
* The ti is equally spaced across [0..1] [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the curve are
* already sorted in the X axis in the increasing order. Calculating convex-hull is
* much easier than a set of arbitrary points.
*/
function _convexhull( dq0, dq1, dq2, dq3 ){
var distq1 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.3333333333333333, dq1 );
var distq2 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.6666666666666666, dq2 );
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3]
if( distq1 * distq2 < 0 ) {
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
// Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of the convexhull
// so we are pretty much done here.
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 1.0, dq3 ],
[ 0.6666666666666666, dq2, 0.0, dq0 ],
[ 1.0, dq3, 0.6666666666666666, dq2 ]
];
} else {
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]
// Convexhull can be a triangle or a quadrilateral and
// line [0, q0, 1, q3] is part of the convexhull.
// Check if the hull is a triangle or a quadrilateral
var dqmin, dqmax, dqapex1, dqapex2;
distq1 = Math.abs(distq1);
distq2 = Math.abs(distq2);
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
if( distq1 > distq2 ){
dqmin = [ 0.6666666666666666, dq2 ];
dqmax = [ 0.3333333333333333, dq1 ];
// apex is dq3 and the other apex point is dq0
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = 1.0, vqa1a2y = dq3 - dq0;
// vector dqapex->dqmax
vqa1Maxx = 0.6666666666666666, vqa1Maxy = dq3 - dq1;
// vector dqapex->dqmin
vqa1Minx = 0.3333333333333333, vqa1Miny = dq3 - dq2;
} else {
dqmin = [ 0.3333333333333333, dq1 ];
dqmax = [ 0.6666666666666666, dq2 ];
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = -1.0, vqa1a2y = dq0 - dq3;
// vector dqapex->dqmax
vqa1Maxx = -0.6666666666666666, vqa1Maxy = dq0 - dq2;
// vector dqapex->dqmin
vqa1Minx = -0.3333333333333333, vqa1Miny = dq0 - dq1;
}
// compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
if( vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0 ){
// Point [2/3, dq2] is inside the triangle and the convex hull is a triangle
Dt = [
[ 0.0, dq0, dqmax[0], dqmax[1] ],
[ dqmax[0], dqmax[1], 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
} else {
// Convexhull is a quadrilateral and we need all lines in the correct order where
// line [0, q0, 1, q3] is part of the convex hull
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 0.6666666666666666, dq2 ],
[ 0.6666666666666666, dq2, 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
}
}
return Dt;
}
function drawFatline( v1 ) {
function signum(num) {
return ( num > 0 )? 1 : ( num < 0 )? -1 : 0;
}
var l = new Line( [v1[0], v1[1]], [v1[6], v1[7]], false );
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
var d1 = l.getSide( p1 ) * l.getDistance( p1 ) || 0;
var d2 = l.getSide( p2 ) * l.getDistance( p2 ) || 0;
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
}
var ll = new Path.Line( v1[0], v1[1], v1[6], v1[7] );
window.__p3.push( ll );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9, 0.8);
var lp1 = ll.segments[0].point;
var lp2 = ll.segments[1].point;
var pm = l.vector, pm1 = pm.rotate( signum( dmin ) * -90 ), pm2 = pm.rotate( signum( dmax ) * -90 );
var p11 = lp1.add( pm1.normalize( Math.abs(dmin) ) );
var p12 = lp2.add( pm1.normalize( Math.abs(dmin) ) );
var p21 = lp1.add( pm2.normalize( Math.abs(dmax) ) );
var p22 = lp2.add( pm2.normalize( Math.abs(dmax) ) );
window.__p3.push( new Path.Line( p11, p12 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
window.__p3.push( new Path.Line( p21, p22 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
}
function plotD_vs_t( x, y, arr, arr2, v, dmin, dmax, tmin, tmax, yscale, tvalue ){
yscale = yscale || 1;
new Path.Line( x, y-100, x, y+100 ).style.strokeColor = '#aaa';
new Path.Line( x, y, x + 200, y ).style.strokeColor = '#aaa';
var clr = (tvalue)? '#a00' : '#00a';
if( window.__p3 ) window.__p3.map(function(a){a.remove();});
window.__p3 = [];
drawFatline( v );
window.__p3.push( new Path.Line( x, y + dmin * yscale, x + 200, y + dmin * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x, y + dmax * yscale, x + 200, y + dmax * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x + tmin * 190, y-100, x + tmin * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
window.__p3.push( new Path.Line( x + tmax * 190, y-100, x + tmax * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
for (var i = 0; i < arr.length; i++) {
window.__p3.push( new Path.Line( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ),
new Point( x + arr[i][2] * 190, y + arr[i][3] * yscale ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#999';
}
var pnt = [];
var arr2x = [ 0.0, 0.333333333, 0.6666666666, 1.0 ];
for (var i = 0; i < arr2.length; i++) {
pnt.push( new Point( x + arr2x[i] * 190, y + arr2[i] * yscale ) );
window.__p3.push( new Path.Circle( pnt[pnt.length-1], 2 ) );
window.__p3[window.__p3.length-1].style.fillColor = '#000'
}
// var pth = new Path( pnt[0], pnt[1], pnt[2], pnt[3] );
// pth.closed = true;
window.__p3.push( new Path( new Segment(pnt[0], null, pnt[1].subtract(pnt[0])), new Segment( pnt[3], pnt[2].subtract(pnt[3]), null ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
view.draw();
}
// This is basically an "unrolled" version of #Line.getDistance() with sign
// May be a static method could be better!
var _getSignedDist = function( a1x, a1y, a2x, a2y, bx, by ){
var vx = a2x - a1x, vy = a2y - a1y;
var m = vy / vx, b = a1y - ( m * a1x );
return ( by - ( m * bx ) - b ) / Math.sqrt( m*m + 1 );
};
/**
* Intersections between curve and line becomes rather simple here mostly
* because of paperjs Numerical class. We can rotate the curve and line so that
* the line is on X axis, and solve the implicit equations for X axis and the curve
*/
var _getCurveLineIntersection = function( v1, v2, curve1, curve2, locations, _other ){
var i, root, point, vc = v1, vl = v2;
var other = ( _other === undefined )? Curve.isLinear( v1 ) : _other;
if( other ){
vl = v1;
vc = v2;
}
var l1x = vl[0], l1y = vl[1], l2x = vl[6], l2y = vl[7];
// rotate both the curve and line around l1 so that line is on x axis
var lvx = l2x - l1x, lvy = l2y - l1y;
// Angle with x axis (1, 0)
var angle = Math.atan2( -lvy, lvx ), sina = Math.sin( angle ), cosa = Math.cos( angle );
// rotated line and curve values
// (rl1x, rl1y) = (0, 0)
var rl2x = lvx * cosa - lvy * sina, rl2y = lvy * cosa + lvx * sina;
var rvc = [];
for( i=0; i<8; i+=2 ){
var vcx = vc[i] - l1x, vcy = vc[i+1] - l1y;
rvc.push( vcx * cosa - vcy * sina );
rvc.push( vcy * cosa + vcx * sina );
}
var roots = [];
Curve.solveCubic(rvc, 1, 0, roots);
i = roots.length;
while( i-- ){
root = roots[i];
if( root >= 0 && root <= 1 ){
point = Curve.evaluate(rvc, root, true, 0);
// We do have a point on the infinite line. Check if it falls on the line *segment*.
if( point.x >= 0 && point.x <= rl2x ){
// The actual intersection point
point = Curve.evaluate(vc, root, true, 0);
if( other ) root = null;
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
locations.push( new CurveLocation( curve1, root, point, curve2 ) );
}
}
}
};
var _getLineLineIntersection = function( v1, v2, curve1, curve2, locations ){
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7], false);
if (point) {
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
// Passing null for parameter leads to lazy determination
// of parameter values in CurveLocation#getParameter()
// only once they are requested.
locations.push(new CurveLocation(curve1, null, point, curve2));
}
};