Revert fat-line clipping optimization that checked for straight curves, as unfortunately it wasn't reliable in many edge cases.

Relates to #1263
This commit is contained in:
Jürg Lehni 2017-03-07 20:01:05 +01:00
parent 867d0874dc
commit ecc1edb6ea
3 changed files with 59 additions and 53 deletions

View file

@ -63,9 +63,6 @@
- Improve reliability of `Curve#getIntersections()` (#1174).
- Fix `getOverlaps()` to always return overlaps in correct sequence (#1223).
- Improve handling of multiple crossings on the same curve.
- Improve and optimize fat-line clipping algorithm by checking if subdivided
curves are straight and falling back on line-line / line-curve approach if
they are.
- Improve tangent direction handling in `CurveLocation#isCrossing()`, by finding
unambiguous vectors, taking inception points and "peaks" into account
(#1073, #1074).

View file

@ -1760,30 +1760,17 @@ new function() { // Scope for bezier intersection using fat-line clipping
}
}
function addCurveIntersections(v1, v2, c1, c2, tMin, tMax, uMin, uMax,
locations, include, recursion, calls, flip) {
function addCurveIntersections(v1, v2, c1, c2, locations, include, flip,
recursion, calls, tMin, tMax, uMin, uMax) {
// Avoid deeper recursion, by counting the total amount of recursions,
// as well as the total amount of calls, to avoid massive call-trees as
// suggested by @iconexperience in #904#issuecomment-225283430.
// See also: #565 #899 #1074
var abort = ++calls > 4096 || recursion > 40,
// If we need to abort, consider both curves as straight and see if
// their lines intersect.
straight1 = abort || Curve.isStraight(v1),
straight2 = abort || Curve.isStraight(v2);
if (straight1 || straight2) {
(straight1 && straight2
? addLineIntersection
: addCurveLineIntersections)(
flip ? v2 : v1, flip ? v1 : v2,
flip ? c2 : c1, flip ? c1 : c2,
locations, include, recursion,
flip ? straight2 : straight1);
if (++calls >= 4096 || ++recursion >= 40)
return calls;
}
// Use an epsilon smaller than CURVETIME_EPSILON to compare curve-time
// parameters in fat-line clipping code.
var epsilon = /*#=*/Numerical.EPSILON,
var fatLineEpsilon = 1e-9,
// Let P be the first curve and Q be the second
q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7],
getSignedDistance = Line.getSignedDistance,
@ -1820,7 +1807,7 @@ new function() { // Scope for bezier intersection using fat-line clipping
// original parameter range for v2.
var tMinNew = tMin + (tMax - tMin) * tMinClip,
tMaxNew = tMin + (tMax - tMin) * tMaxClip;
if (Math.max(uMax - uMin, tMaxNew - tMinNew) < epsilon) {
if (Math.max(uMax - uMin, tMaxNew - tMinNew) < fatLineEpsilon) {
// We have isolated the intersection with sufficient precision
var t = (tMinNew + tMaxNew) / 2,
u = (uMin + uMax) / 2;
@ -1828,7 +1815,6 @@ new function() { // Scope for bezier intersection using fat-line clipping
flip ? c2 : c1, flip ? u : t, null,
flip ? c1 : c2, flip ? t : u, null);
} else {
recursion++;
// Apply the result of the clipping to curve 1:
v1 = Curve.getPart(v1, tMinClip, tMaxClip);
if (tMaxClip - tMinClip > 0.8) {
@ -1837,32 +1823,32 @@ new function() { // Scope for bezier intersection using fat-line clipping
var parts = Curve.subdivide(v1, 0.5),
t = (tMinNew + tMaxNew) / 2;
calls = addCurveIntersections(
v2, parts[0], c2, c1, uMin, uMax, tMinNew, t,
locations, include, recursion, calls, !flip);
v2, parts[0], c2, c1, locations, include, !flip,
recursion, calls, uMin, uMax, tMinNew, t);
calls = addCurveIntersections(
v2, parts[1], c2, c1, uMin, uMax, t, tMaxNew,
locations, include, recursion, calls, !flip);
v2, parts[1], c2, c1, locations, include, !flip,
recursion, calls, uMin, uMax, t, tMaxNew);
} else {
var parts = Curve.subdivide(v2, 0.5),
u = (uMin + uMax) / 2;
calls = addCurveIntersections(
parts[0], v1, c2, c1, uMin, u, tMinNew, tMaxNew,
locations, include, recursion, calls, !flip);
parts[0], v1, c2, c1, locations, include, !flip,
recursion, calls, uMin, u, tMinNew, tMaxNew);
calls = addCurveIntersections(
parts[1], v1, c2, c1, u, uMax, tMinNew, tMaxNew,
locations, include, recursion, calls, !flip);
parts[1], v1, c2, c1, locations, include, !flip,
recursion, calls, u, uMax, tMinNew, tMaxNew);
}
} else { // Iterate
if (uMax - uMin >= epsilon) {
if (uMax - uMin >= fatLineEpsilon) {
calls = addCurveIntersections(
v2, v1, c2, c1, uMin, uMax, tMinNew, tMaxNew,
locations, include, recursion, calls, !flip);
v2, v1, c2, c1, locations, include, !flip,
recursion, calls, uMin, uMax, tMinNew, tMaxNew);
} else {
// The interval on the other curve is already tight enough,
// therefore we keep iterating on the same curve.
calls = addCurveIntersections(
v1, v2, c1, c2, tMinNew, tMaxNew, uMin, uMax,
locations, include, recursion, calls, flip);
v1, v2, c1, c2, locations, include, flip,
recursion, calls, tMinNew, tMaxNew, uMin, uMax);
}
}
}
@ -1993,28 +1979,28 @@ new function() { // Scope for bezier intersection using fat-line clipping
}
function addCurveLineIntersections(v1, v2, c1, c2, locations, include,
recursion, straight1) {
var flip = straight1,
vc = flip ? v2 : v1,
vl = flip ? v1 : v2,
x1 = vl[0], y1 = vl[1],
x2 = vl[6], y2 = vl[7],
roots = getCurveLineIntersections(vc, x1, y1, x2 - x1, y2 - y1);
flip) {
// addCurveLineIntersections() is called so that v1 is always the curve
// and v2 the line. flip indicates whether the curves need to be flipped
// in the call to addLocation().
var x1 = v2[0], y1 = v2[1],
x2 = v2[6], y2 = v2[7],
roots = getCurveLineIntersections(v1, x1, y1, x2 - x1, y2 - y1);
// NOTE: count could be -1 for infinite solutions, but that should only
// happen with lines, in which case we should not be here.
for (var i = 0, l = roots.length; i < l; i++) {
// For each found solution on the rotated curve, get the point on
// the real curve and with that the location on the line.
var tc = roots[i],
pc = Curve.getPoint(vc, tc),
tl = Curve.getTimeOf(vl, pc);
if (tl !== null) {
var pl = Curve.getPoint(vl, tl);
var t1 = roots[i],
p1 = Curve.getPoint(v1, t1),
t2 = Curve.getTimeOf(v2, p1);
if (t2 !== null) {
var p2 = Curve.getPoint(v2, t2);
// Only use the time values if there was no recursion, and let
// addLocation() figure out the actual time values otherwise.
addLocation(locations, include,
c1, recursion ? null : flip ? tl : tc, flip ? pl : pc,
c2, recursion ? null : flip ? tc : tl, flip ? pc : pl);
flip ? c2 : c1, flip ? t2 : t1, flip ? p2 : p1,
flip ? c1 : c2, flip ? t1 : t2, flip ? p1 : p2);
}
}
}
@ -2056,9 +2042,29 @@ new function() { // Scope for bezier intersection using fat-line clipping
c2, overlap[1], null, true);
}
} else {
addCurveIntersections(
v1, v2, c1, c2, 0, 1, 0, 1, // tMin, tMax, uMin, uMax
locations, include, 0, 0, 0); // recursion, calls, flip
var straight1 = Curve.isStraight(v1),
straight2 = Curve.isStraight(v2),
straight = straight1 && straight2,
flip = straight1 && !straight2,
before = locations.length;
// Determine the correct intersection method based on whether
// one or curves are straight lines:
(straight
? addLineIntersection
: straight1 || straight2
? addCurveLineIntersections
: addCurveIntersections)(
flip ? v2 : v1, flip ? v1 : v2,
flip ? c2 : c1, flip ? c1 : c2,
locations, include, flip,
// Define the defaults for these parameters of
// addCurveIntersections():
// recursion, calls, tMin, tMax, uMin, uMax
0, 0, 0, 1, 0, 1);
// We're done if we handle lines and found one intersection
// already: #805#issuecomment-148503018
if (straight && locations.length > before)
return locations;
// Handle the special case where the first curve's start- / end-
// point overlaps with the second curve's start- / end-point.

View file

@ -249,8 +249,11 @@ test('#1239', function() {
testIntersections(p1.getIntersections(p2), [
{ point: { x: 956.28999, y: 351.925 }, index: 1, time: 0.000577, crossing: true},
{ point: { x: 956.28948, y: 352.2327 }, index: 1, time: 0.003804, crossing: true},
{ point: { x: 939.50932, y: 415.17952 }, index: 1, time: 0.701801, crossing: true},
{ point: { x: 922.9625, y: 437.995 }, index: 2, time: 0, crossing: false},
{ point: { x: 911.15, y: 427.245 }, index: 3, time: 0, crossing: false}
{ point: { x: 911.15, y: 427.245 }, index: 3, time: 0, crossing: false},
{ point: { x: 932.08099, y: 394.02288 }, index: 3, time: 0.477224, crossing: true},
{ point: { x: 940.28956, y: 352.18697 }, index: 3, time: 0.996218, crossing: true}
]);
});