Implement correct method for calculating curvature on a Path

This commit is contained in:
hkrish 2013-06-17 15:07:53 +05:30
parent de8aa1a6a5
commit 2693516844
2 changed files with 58 additions and 2 deletions

View file

@ -65,6 +65,17 @@ var Line = Base.extend(/** @lends Line# */{
return new Point(this._vx, this._vy);
},
/**
* The length of the line
*
* @name Line#vector
* @return {Number}
*/
getLength: function() {
var v = this.getVector();
return Math.sqrt(v.x * v.x + v.y * v.y);
},
/**
* @param {Line} line
* @param {Boolean} [isInfinite=false]

View file

@ -466,7 +466,7 @@ statics: {
y = (3 * ay * t + 2 * by) * t + cy;
}
break;
case 3: // curvature, 2nd derivative
case 3: // 2nd derivative
x = 6 * ax * t + 2 * bx;
y = 6 * ay * t + 2 * by;
break;
@ -771,7 +771,7 @@ statics: {
* @bean
* @ignore
*/
}), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'],
}), Base.each(['getPoint', 'getTangent', 'getNormal'],
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without
@ -788,6 +788,51 @@ statics: {
};
},
/** @lends Curve# */{
/**
* Calculate the curvature at the specified offset on the path.
* Curvature indicates how sharply it curves. A straight line has zero
* curvature where as a circle has a constant curvature.
*
* Curvature at a point, by definition, is a scalar value equal to
* the reciprocal of the 'osculating circle' at that point on the path.
*
* Reference:
* http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
*
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Number} Curvatue of the curve at specified offset
*/
getCurvatureAt: function(offset, isParameter) {
values = this.getValues();
// First derivative at offset/parameter
var dt = Curve.evaluate(values, offset, isParameter, 1);
// Second derivative at offset/parameter
var d2t = Curve.evaluate(values, offset, isParameter, 3);
var dx = dt.x, dy = dt.y, d2x = d2t.x, d2y = d2t.y;
var isEnd = offset === 0 || ( isParameter )? offset === 1 :
offset === this.getLength();
//Calculate Curvature
// if at an end point, k = (2/3) * h / a^2
// else, k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
var line, point, a, h;
if( isEnd ){
if( offset === 0 ){
line = new Line( values[0], values[1], values[2], values[3], true );
point = new Point( values[6]+values[4], values[7]+values[5] );
} else {
line = new Line( values[6], values[7], values[4], values[5], true );
point = new Point( values[0]+values[2], values[1]+values[3] );
}
a = line.getLength();
h = line.getDistance( point, true );
return ( 2 * h) / ( 3 * a * a );
} else
return ( dx*d2y - dy*d2x ) / Math.pow( dx*dx + dy*dy, 3/2 );
},
/**
* Calculates the curve time parameter of the specified offset on the path,
* relative to the provided start parameter. If offset is a negative value,