diff --git a/src/basic/Line.js b/src/basic/Line.js index 6002f77f..eeada4fa 100644 --- a/src/basic/Line.js +++ b/src/basic/Line.js @@ -65,6 +65,17 @@ var Line = Base.extend(/** @lends Line# */{ return new Point(this._vx, this._vy); }, + /** + * The length of the line + * + * @name Line#vector + * @return {Number} + */ + getLength: function() { + var v = this.getVector(); + return Math.sqrt(v.x * v.x + v.y * v.y); + }, + /** * @param {Line} line * @param {Boolean} [isInfinite=false] diff --git a/src/path/Curve.js b/src/path/Curve.js index 66069dd2..f54afb65 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -466,7 +466,7 @@ statics: { y = (3 * ay * t + 2 * by) * t + cy; } break; - case 3: // curvature, 2nd derivative + case 3: // 2nd derivative x = 6 * ax * t + 2 * bx; y = 6 * ay * t + 2 * by; break; @@ -771,7 +771,7 @@ statics: { * @bean * @ignore */ -}), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'], +}), Base.each(['getPoint', 'getTangent', 'getNormal'], // Note: Although Curve.getBounds() exists, we are using Path.getBounds() to // determine the bounds of Curve objects with defined segment1 and segment2 // values Curve.getBounds() can be used directly on curve arrays, without @@ -788,6 +788,51 @@ statics: { }; }, /** @lends Curve# */{ + /** + * Calculate the curvature at the specified offset on the path. + * Curvature indicates how sharply it curves. A straight line has zero + * curvature where as a circle has a constant curvature. + * + * Curvature at a point, by definition, is a scalar value equal to + * the reciprocal of the 'osculating circle' at that point on the path. + * + * Reference: + * http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31 + * + * @param {Number} offset the offset on the curve, or the curve time + * parameter if {@code isParameter} is {@code true} + * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} + * is a curve time parameter. + * @return {Number} Curvatue of the curve at specified offset + */ + getCurvatureAt: function(offset, isParameter) { + values = this.getValues(); + // First derivative at offset/parameter + var dt = Curve.evaluate(values, offset, isParameter, 1); + // Second derivative at offset/parameter + var d2t = Curve.evaluate(values, offset, isParameter, 3); + var dx = dt.x, dy = dt.y, d2x = d2t.x, d2y = d2t.y; + var isEnd = offset === 0 || ( isParameter )? offset === 1 : + offset === this.getLength(); + //Calculate Curvature + // if at an end point, k = (2/3) * h / a^2 + // else, k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2)) + var line, point, a, h; + if( isEnd ){ + if( offset === 0 ){ + line = new Line( values[0], values[1], values[2], values[3], true ); + point = new Point( values[6]+values[4], values[7]+values[5] ); + } else { + line = new Line( values[6], values[7], values[4], values[5], true ); + point = new Point( values[0]+values[2], values[1]+values[3] ); + } + a = line.getLength(); + h = line.getDistance( point, true ); + return ( 2 * h) / ( 3 * a * a ); + } else + return ( dx*d2y - dy*d2x ) / Math.pow( dx*dx + dy*dy, 3/2 ); + }, + /** * Calculates the curve time parameter of the specified offset on the path, * relative to the provided start parameter. If offset is a negative value,