mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-20 22:39:50 -05:00
Improve tangent direction handling in isCrossing()
Find unambiguous vectors by taking inception points and “peaks” into account. Relates to #1073, #1074
This commit is contained in:
parent
4e215b0eab
commit
1806b5959e
2 changed files with 58 additions and 19 deletions
|
@ -1468,8 +1468,6 @@ new function() { // Scope for methods that require private functions
|
||||||
// 1: tangent, 1st derivative
|
// 1: tangent, 1st derivative
|
||||||
// 2: normal, 1st derivative
|
// 2: normal, 1st derivative
|
||||||
// 3: curvature, 1st derivative & 2nd derivative
|
// 3: curvature, 1st derivative & 2nd derivative
|
||||||
// Simply use the derivation of the bezier function for both
|
|
||||||
// the x and y coordinates:
|
|
||||||
// Prevent tangents and normals of length 0:
|
// Prevent tangents and normals of length 0:
|
||||||
// http://stackoverflow.com/questions/10506868/
|
// http://stackoverflow.com/questions/10506868/
|
||||||
if (t < tMin) {
|
if (t < tMin) {
|
||||||
|
|
|
@ -427,6 +427,55 @@ var CurveLocation = Base.extend(/** @lends CurveLocation# */{
|
||||||
if (!c1 || !c2 || !c3 || !c4)
|
if (!c1 || !c2 || !c3 || !c4)
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
|
// Calculate unambiguous angles for all 4 tangents at the intersection:
|
||||||
|
// - If the intersection is inside a curve (t1 / t2Inside), the tangent
|
||||||
|
// at t1 / t2 is unambiguous, because the curve is continuous.
|
||||||
|
// - If the intersection is on a segment, step away at equal offsets on
|
||||||
|
// each curve, to calculate unambiguous angles. The vector from the
|
||||||
|
// intersection to this new location is used to determine the angle.
|
||||||
|
// The offset is determined by the taking the shortest distance on all
|
||||||
|
// involved curves that is unambiguous. We do this by determining the
|
||||||
|
// largest offsets of unambiguous direction on each curve by finding
|
||||||
|
// their inflections points and "peaks", and then use half of that.
|
||||||
|
|
||||||
|
var offsets = [];
|
||||||
|
|
||||||
|
function addOffsets(curve, end) {
|
||||||
|
var v = curve.getValues(),
|
||||||
|
info = Curve.classify(v),
|
||||||
|
roots = info.roots || getPeaks(v),
|
||||||
|
count = roots.length,
|
||||||
|
t = end && count > 1 ? roots[count - 1]
|
||||||
|
: count > 0 ? roots[0]
|
||||||
|
: 0.5;
|
||||||
|
offsets.push(Curve.getLength(v, end ? t : 0, end ? 1 : t) / 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Peaks are locations sharing some qualities of curvature extrema but
|
||||||
|
// are cheaper to compute. They fulfill their purpose here quite well.
|
||||||
|
// See: http://math.stackexchange.com/questions/1954845/bezier-curvature-extrema
|
||||||
|
function getPeaks(v) {
|
||||||
|
var x0 = v[0], y0 = v[1],
|
||||||
|
x1 = v[2], y1 = v[3],
|
||||||
|
x2 = v[4], y2 = v[5],
|
||||||
|
x3 = v[6], y3 = v[7],
|
||||||
|
ax = -x0 + 3 * x1 - 3 * x2 + x3,
|
||||||
|
bx = 3 * x0 - 6 * x1 + 3 * x2,
|
||||||
|
cx = -3 * x0 + 3 * x1,
|
||||||
|
ay = -y0 + 3 * y1 - 3 * y2 + y3,
|
||||||
|
by = 3 * y0 - 6 * y1 + 3 * y2,
|
||||||
|
cy = -3 * y0 + 3 * y1,
|
||||||
|
roots = [];
|
||||||
|
Numerical.solveCubic(
|
||||||
|
9 * (ax * ax + ay * ay),
|
||||||
|
9 * (ax * bx + by * ay),
|
||||||
|
2 * (bx * bx + by * by) + 3 * (cx * ax + cy * ay),
|
||||||
|
(cx * bx + by * cy),
|
||||||
|
// Exclude 0 and 1 as we don't want to use them as peaks.
|
||||||
|
roots, tMin, tMax);
|
||||||
|
return roots.sort();
|
||||||
|
}
|
||||||
|
|
||||||
function isInRange(angle, min, max) {
|
function isInRange(angle, min, max) {
|
||||||
return min < max
|
return min < max
|
||||||
? angle > min && angle < max
|
? angle > min && angle < max
|
||||||
|
@ -434,23 +483,16 @@ var CurveLocation = Base.extend(/** @lends CurveLocation# */{
|
||||||
: angle > min || angle < max;
|
: angle > min || angle < max;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculate unambiguous angles for all 4 tangents at the intersection:
|
if (!t1Inside) {
|
||||||
// - If the intersection is inside a curve (t1 / t2Inside), the tangent
|
addOffsets(c1, true);
|
||||||
// at t1 / t2 is unambiguous, because the curve is continuous.
|
addOffsets(c2, false);
|
||||||
// - If the intersection is on a segment, step away at equal offsets on
|
}
|
||||||
// each curve, to calculate unambiguous angles. The vector from the
|
if (!t2Inside) {
|
||||||
// intersection to this new location is used to determine the angle.
|
addOffsets(c3, true);
|
||||||
// The offset is determined by taking 1/64th of the length of the
|
addOffsets(c4, false);
|
||||||
// shortest of all involved curves.
|
}
|
||||||
// NOTE: VectorBoolean has code that slowly shifts these offsets inwards
|
|
||||||
// until the resulting tangents are not ambiguous. Do we need this too?
|
|
||||||
var lenghts = [];
|
|
||||||
if (!t1Inside)
|
|
||||||
lenghts.push(c1.getLength(), c2.getLength());
|
|
||||||
if (!t2Inside)
|
|
||||||
lenghts.push(c3.getLength(), c4.getLength());
|
|
||||||
var pt = this.getPoint(),
|
var pt = this.getPoint(),
|
||||||
offset = Math.min.apply(Math, lenghts) / 64,
|
offset = Math.min.apply(Math, offsets),
|
||||||
v2 = t1Inside ? c2.getTangentAtTime(t1)
|
v2 = t1Inside ? c2.getTangentAtTime(t1)
|
||||||
: c2.getPointAt(offset).subtract(pt),
|
: c2.getPointAt(offset).subtract(pt),
|
||||||
v1 = t1Inside ? v2.negate()
|
v1 = t1Inside ? v2.negate()
|
||||||
|
@ -459,7 +501,6 @@ var CurveLocation = Base.extend(/** @lends CurveLocation# */{
|
||||||
: c4.getPointAt(offset).subtract(pt),
|
: c4.getPointAt(offset).subtract(pt),
|
||||||
v3 = t2Inside ? v4.negate()
|
v3 = t2Inside ? v4.negate()
|
||||||
: c3.getPointAt(-offset).subtract(pt),
|
: c3.getPointAt(-offset).subtract(pt),
|
||||||
// NOTE: For shorter API calls we work with angles in degrees here:
|
|
||||||
a1 = v1.getAngle(),
|
a1 = v1.getAngle(),
|
||||||
a2 = v2.getAngle(),
|
a2 = v2.getAngle(),
|
||||||
a3 = v3.getAngle(),
|
a3 = v3.getAngle(),
|
||||||
|
|
Loading…
Reference in a new issue