diff --git a/src/path/Curve.js b/src/path/Curve.js index e5d93be3..93118962 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -1468,8 +1468,6 @@ new function() { // Scope for methods that require private functions // 1: tangent, 1st derivative // 2: normal, 1st derivative // 3: curvature, 1st derivative & 2nd derivative - // Simply use the derivation of the bezier function for both - // the x and y coordinates: // Prevent tangents and normals of length 0: // http://stackoverflow.com/questions/10506868/ if (t < tMin) { diff --git a/src/path/CurveLocation.js b/src/path/CurveLocation.js index 3c0c93b4..9ea92e9c 100644 --- a/src/path/CurveLocation.js +++ b/src/path/CurveLocation.js @@ -427,6 +427,55 @@ var CurveLocation = Base.extend(/** @lends CurveLocation# */{ if (!c1 || !c2 || !c3 || !c4) return false; + // Calculate unambiguous angles for all 4 tangents at the intersection: + // - If the intersection is inside a curve (t1 / t2Inside), the tangent + // at t1 / t2 is unambiguous, because the curve is continuous. + // - If the intersection is on a segment, step away at equal offsets on + // each curve, to calculate unambiguous angles. The vector from the + // intersection to this new location is used to determine the angle. + // The offset is determined by the taking the shortest distance on all + // involved curves that is unambiguous. We do this by determining the + // largest offsets of unambiguous direction on each curve by finding + // their inflections points and "peaks", and then use half of that. + + var offsets = []; + + function addOffsets(curve, end) { + var v = curve.getValues(), + info = Curve.classify(v), + roots = info.roots || getPeaks(v), + count = roots.length, + t = end && count > 1 ? roots[count - 1] + : count > 0 ? roots[0] + : 0.5; + offsets.push(Curve.getLength(v, end ? t : 0, end ? 1 : t) / 2); + } + + // Peaks are locations sharing some qualities of curvature extrema but + // are cheaper to compute. They fulfill their purpose here quite well. + // See: http://math.stackexchange.com/questions/1954845/bezier-curvature-extrema + function getPeaks(v) { + var x0 = v[0], y0 = v[1], + x1 = v[2], y1 = v[3], + x2 = v[4], y2 = v[5], + x3 = v[6], y3 = v[7], + ax = -x0 + 3 * x1 - 3 * x2 + x3, + bx = 3 * x0 - 6 * x1 + 3 * x2, + cx = -3 * x0 + 3 * x1, + ay = -y0 + 3 * y1 - 3 * y2 + y3, + by = 3 * y0 - 6 * y1 + 3 * y2, + cy = -3 * y0 + 3 * y1, + roots = []; + Numerical.solveCubic( + 9 * (ax * ax + ay * ay), + 9 * (ax * bx + by * ay), + 2 * (bx * bx + by * by) + 3 * (cx * ax + cy * ay), + (cx * bx + by * cy), + // Exclude 0 and 1 as we don't want to use them as peaks. + roots, tMin, tMax); + return roots.sort(); + } + function isInRange(angle, min, max) { return min < max ? angle > min && angle < max @@ -434,23 +483,16 @@ var CurveLocation = Base.extend(/** @lends CurveLocation# */{ : angle > min || angle < max; } - // Calculate unambiguous angles for all 4 tangents at the intersection: - // - If the intersection is inside a curve (t1 / t2Inside), the tangent - // at t1 / t2 is unambiguous, because the curve is continuous. - // - If the intersection is on a segment, step away at equal offsets on - // each curve, to calculate unambiguous angles. The vector from the - // intersection to this new location is used to determine the angle. - // The offset is determined by taking 1/64th of the length of the - // shortest of all involved curves. - // NOTE: VectorBoolean has code that slowly shifts these offsets inwards - // until the resulting tangents are not ambiguous. Do we need this too? - var lenghts = []; - if (!t1Inside) - lenghts.push(c1.getLength(), c2.getLength()); - if (!t2Inside) - lenghts.push(c3.getLength(), c4.getLength()); + if (!t1Inside) { + addOffsets(c1, true); + addOffsets(c2, false); + } + if (!t2Inside) { + addOffsets(c3, true); + addOffsets(c4, false); + } var pt = this.getPoint(), - offset = Math.min.apply(Math, lenghts) / 64, + offset = Math.min.apply(Math, offsets), v2 = t1Inside ? c2.getTangentAtTime(t1) : c2.getPointAt(offset).subtract(pt), v1 = t1Inside ? v2.negate() @@ -459,7 +501,6 @@ var CurveLocation = Base.extend(/** @lends CurveLocation# */{ : c4.getPointAt(offset).subtract(pt), v3 = t2Inside ? v4.negate() : c3.getPointAt(-offset).subtract(pt), - // NOTE: For shorter API calls we work with angles in degrees here: a1 = v1.getAngle(), a2 = v2.getAngle(), a3 = v3.getAngle(),