Further optimise getParameter() / getLength() code by reusing a integrand function and taking advantage of integral ranges.

This commit is contained in:
Jürg Lehni 2011-03-07 02:22:33 +00:00
parent 3447d11a6f
commit 0e8c346888

View file

@ -151,8 +151,13 @@ var Curve = this.Curve = Base.extend({
];
},
getLength: function() {
return Curve.getLength.apply(Curve, this.getCurveValues());
// TODO: Port back to Scriptographer, optionally suppporting from, to
// TODO: Replaces getPartLength(fromParameter, toParameter)?
getLength: function(from, to) {
var values = this.getCurveValues();
if (arguments.length > 0)
values.push(from, to);
return Curve.getLength.apply(Curve, values);
},
/**
@ -190,7 +195,6 @@ var Curve = this.Curve = Base.extend({
// TODO: divide
// TODO: split
// TODO: getPartLength(fromParameter, toParameter)
clone: function() {
return new Curve(this._segment1, this._segment2);
@ -204,91 +208,6 @@ var Curve = this.Curve = Base.extend({
? ', handle2: ' + this._segment2._handleIn : '')
+ ', point2: ' + this._segment2._point
+ ' }';
},
statics: {
getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) {
if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) {
// Straight line
var dx = p2x - p1x,
dy = p2y - p1y;
return Math.sqrt(dx * dx + dy * dy);
}
// Calculate the coefficients of a Bezier derivative.
var ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
bx = 6 * (p1x + c2x) - 12 * c1x,
cx = 3 * (c1x - p1x),
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
by = 6 * (p1y + c2y) - 12 * c1y,
cy = 3 * (c1y - p1y);
function ds(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
}
return Numerical.gauss(ds, 0.0, 1.0, 8);
},
subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
var u = 1 - t,
// Interpolate from 4 to 3 points
p3x = u * p1x + t * c1x,
p3y = u * p1y + t * c1y,
p4x = u * c1x + t * c2x,
p4y = u * c1y + t * c2y,
p5x = u * c2x + t * p2x,
p5y = u * c2y + t * p2y,
// Interpolate from 3 to 2 points
p6x = u * p3x + t * p4x,
p6y = u * p3y + t * p4y,
p7x = u * p4x + t * p5x,
p7y = u * p4y + t * p5y,
// Interpolate from 2 points to 1 point
p8x = u * p6x + t * p7x,
p8y = u * p6y + t * p7y;
// We now have all the values we need to build the subcurves
return [
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
];
},
getPartLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t, right) {
if (t == 0)
return 0;
var part;
if (t < 1) {
part = Curve.subdivide(p1x, p1y, c1x, c1y, c2x, c2y,
p2x, p2y, t)[right ? 1 : 0];
} else {
part = arguments;
}
return Curve.getLength.apply(Curve, part);
},
getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, length) {
if (length <= 0)
return 0;
var bezierLength = Curve.getLength(
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y);
if (length >= bezierLength)
return 1;
// Let's use the Van WijngaardenDekkerBrent Method to find
// solutions more reliably than with False Position Method.
function f(t) {
return length - Curve.getPartLength(
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t);
}
// Use length / bezierLength for an initial guess for b, to bring
// us closer:
return Numerical.brent(f, 0, length / bezierLength,
Numerical.TOLERANCE);
}
}
}, new function() {
function evaluate(that, t, type) {
@ -356,6 +275,24 @@ var Curve = this.Curve = Base.extend({
return type == 2 ? new Point(y, -x) : new Point(x, y);
}
function getLengthIntegrand(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) {
// Calculate the coefficients of a Bezier derivative.
var ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
bx = 6 * (p1x + c2x) - 12 * c1x,
cx = 3 * (c1x - p1x),
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
by = 6 * (p1y + c2y) - 12 * c1y,
cy = 3 * (c1y - p1y);
return function(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
}
}
return {
getPoint: function(parameter) {
return evaluate(this, parameter, 0);
@ -367,6 +304,71 @@ var Curve = this.Curve = Base.extend({
getNormal: function(parameter) {
return evaluate(this, parameter, 2);
},
statics: {
getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, a, b) {
if (a == undefined)
a = 0;
if (b == undefined)
b = 1;
if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) {
// Straight line
var mul = (b - a),
dx = (p2x - p1x) * mul,
dy = (p2y - p1y) * mul;
return Math.sqrt(dx * dx + dy * dy);
}
var ds = getLengthIntegrand(
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y);
return Numerical.gauss(ds, a, b, 8);
},
getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y,
length) {
if (length <= 0)
return 0;
// TODO: Optimise for straight lines
var bezierLength = Curve.getLength(
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, 0, 1);
if (length >= bezierLength)
return 1;
// Let's use the Van WijngaardenDekkerBrent Method to find
// solutions more reliably than with False Position Method.
var ds = getLengthIntegrand(
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y);
function f(t) {
return length - Numerical.gauss(ds, 0, t, 5);
}
// Use length / bezierLength for an initial guess for b, to
// bring us closer:
return Numerical.brent(f, 0, length / bezierLength,
Numerical.TOLERANCE);
},
subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
var u = 1 - t,
// Interpolate from 4 to 3 points
p3x = u * p1x + t * c1x,
p3y = u * p1y + t * c1y,
p4x = u * c1x + t * c2x,
p4y = u * c1y + t * c2y,
p5x = u * c2x + t * p2x,
p5y = u * c2y + t * p2y,
// Interpolate from 3 to 2 points
p6x = u * p3x + t * p4x,
p6y = u * p3y + t * p4y,
p7x = u * p4x + t * p5x,
p7y = u * p4y + t * p5y,
// Interpolate from 2 points to 1 point
p8x = u * p6x + t * p7x,
p8y = u * p6y + t * p7y;
// We now have all the values we need to build the subcurves
return [
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
];
}
}
};
});