diff --git a/src/path/Curve.js b/src/path/Curve.js index 2c2dfacf..f5f40459 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -151,8 +151,13 @@ var Curve = this.Curve = Base.extend({ ]; }, - getLength: function() { - return Curve.getLength.apply(Curve, this.getCurveValues()); + // TODO: Port back to Scriptographer, optionally suppporting from, to + // TODO: Replaces getPartLength(fromParameter, toParameter)? + getLength: function(from, to) { + var values = this.getCurveValues(); + if (arguments.length > 0) + values.push(from, to); + return Curve.getLength.apply(Curve, values); }, /** @@ -190,7 +195,6 @@ var Curve = this.Curve = Base.extend({ // TODO: divide // TODO: split - // TODO: getPartLength(fromParameter, toParameter) clone: function() { return new Curve(this._segment1, this._segment2); @@ -204,91 +208,6 @@ var Curve = this.Curve = Base.extend({ ? ', handle2: ' + this._segment2._handleIn : '') + ', point2: ' + this._segment2._point + ' }'; - }, - - statics: { - getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) { - if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) { - // Straight line - var dx = p2x - p1x, - dy = p2y - p1y; - return Math.sqrt(dx * dx + dy * dy); - } - - // Calculate the coefficients of a Bezier derivative. - var ax = 9 * (c1x - c2x) + 3 * (p2x - p1x), - bx = 6 * (p1x + c2x) - 12 * c1x, - cx = 3 * (c1x - p1x), - - ay = 9 * (c1y - c2y) + 3 * (p2y - p1y), - by = 6 * (p1y + c2y) - 12 * c1y, - cy = 3 * (c1y - p1y); - - function ds(t) { - // Calculate quadratic equations of derivatives for x and y - var dx = (ax * t + bx) * t + cx, - dy = (ay * t + by) * t + cy; - return Math.sqrt(dx * dx + dy * dy); - } - - return Numerical.gauss(ds, 0.0, 1.0, 8); - }, - - subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) { - var u = 1 - t, - // Interpolate from 4 to 3 points - p3x = u * p1x + t * c1x, - p3y = u * p1y + t * c1y, - p4x = u * c1x + t * c2x, - p4y = u * c1y + t * c2y, - p5x = u * c2x + t * p2x, - p5y = u * c2y + t * p2y, - // Interpolate from 3 to 2 points - p6x = u * p3x + t * p4x, - p6y = u * p3y + t * p4y, - p7x = u * p4x + t * p5x, - p7y = u * p4y + t * p5y, - // Interpolate from 2 points to 1 point - p8x = u * p6x + t * p7x, - p8y = u * p6y + t * p7y; - // We now have all the values we need to build the subcurves - return [ - [p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left - [p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right - ]; - }, - - getPartLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t, right) { - if (t == 0) - return 0; - var part; - if (t < 1) { - part = Curve.subdivide(p1x, p1y, c1x, c1y, c2x, c2y, - p2x, p2y, t)[right ? 1 : 0]; - } else { - part = arguments; - } - return Curve.getLength.apply(Curve, part); - }, - - getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, length) { - if (length <= 0) - return 0; - var bezierLength = Curve.getLength( - p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y); - if (length >= bezierLength) - return 1; - // Let's use the Van Wijngaarden–Dekker–Brent Method to find - // solutions more reliably than with False Position Method. - function f(t) { - return length - Curve.getPartLength( - p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t); - } - // Use length / bezierLength for an initial guess for b, to bring - // us closer: - return Numerical.brent(f, 0, length / bezierLength, - Numerical.TOLERANCE); - } } }, new function() { function evaluate(that, t, type) { @@ -356,6 +275,24 @@ var Curve = this.Curve = Base.extend({ return type == 2 ? new Point(y, -x) : new Point(x, y); } + function getLengthIntegrand(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) { + // Calculate the coefficients of a Bezier derivative. + var ax = 9 * (c1x - c2x) + 3 * (p2x - p1x), + bx = 6 * (p1x + c2x) - 12 * c1x, + cx = 3 * (c1x - p1x), + + ay = 9 * (c1y - c2y) + 3 * (p2y - p1y), + by = 6 * (p1y + c2y) - 12 * c1y, + cy = 3 * (c1y - p1y); + + return function(t) { + // Calculate quadratic equations of derivatives for x and y + var dx = (ax * t + bx) * t + cx, + dy = (ay * t + by) * t + cy; + return Math.sqrt(dx * dx + dy * dy); + } + } + return { getPoint: function(parameter) { return evaluate(this, parameter, 0); @@ -367,6 +304,71 @@ var Curve = this.Curve = Base.extend({ getNormal: function(parameter) { return evaluate(this, parameter, 2); + }, + + statics: { + getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, a, b) { + if (a == undefined) + a = 0; + if (b == undefined) + b = 1; + if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) { + // Straight line + var mul = (b - a), + dx = (p2x - p1x) * mul, + dy = (p2y - p1y) * mul; + return Math.sqrt(dx * dx + dy * dy); + } + var ds = getLengthIntegrand( + p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y); + return Numerical.gauss(ds, a, b, 8); + }, + + getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, + length) { + if (length <= 0) + return 0; + // TODO: Optimise for straight lines + var bezierLength = Curve.getLength( + p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, 0, 1); + if (length >= bezierLength) + return 1; + // Let's use the Van Wijngaarden–Dekker–Brent Method to find + // solutions more reliably than with False Position Method. + var ds = getLengthIntegrand( + p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y); + function f(t) { + return length - Numerical.gauss(ds, 0, t, 5); + } + // Use length / bezierLength for an initial guess for b, to + // bring us closer: + return Numerical.brent(f, 0, length / bezierLength, + Numerical.TOLERANCE); + }, + + subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) { + var u = 1 - t, + // Interpolate from 4 to 3 points + p3x = u * p1x + t * c1x, + p3y = u * p1y + t * c1y, + p4x = u * c1x + t * c2x, + p4y = u * c1y + t * c2y, + p5x = u * c2x + t * p2x, + p5y = u * c2y + t * p2y, + // Interpolate from 3 to 2 points + p6x = u * p3x + t * p4x, + p6y = u * p3y + t * p4y, + p7x = u * p4x + t * p5x, + p7y = u * p4y + t * p5y, + // Interpolate from 2 points to 1 point + p8x = u * p6x + t * p7x, + p8y = u * p6y + t * p7y; + // We now have all the values we need to build the subcurves + return [ + [p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left + [p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right + ]; + } } }; });