paper.js/src/path/Curve.js

881 lines
24 KiB
JavaScript
Raw Normal View History

2011-03-06 19:50:44 -05:00
/*
* Paper.js
*
2011-03-06 19:50:44 -05:00
* This file is part of Paper.js, a JavaScript Vector Graphics Library,
* based on Scriptographer.org and designed to be largely API compatible.
2011-03-07 20:41:50 -05:00
* http://paperjs.org/
2011-03-06 19:50:44 -05:00
* http://scriptographer.org/
*
2011-03-06 19:50:44 -05:00
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
2011-07-01 06:17:45 -04:00
* Distributed under the MIT license. See LICENSE file for details.
*
2011-03-07 20:41:50 -05:00
* All rights reserved.
2011-03-06 19:50:44 -05:00
*/
/**
* @name Curve
*
2011-06-27 08:58:17 -04:00
* @class The Curve object represents the parts of a path that are connected by
* two following {@link Segment} objects. The curves of a path can be accessed
* through its {@link Path#curves} array.
2011-06-27 08:58:17 -04:00
*
* While a segment describe the anchor point and its incoming and outgoing
* handles, a Curve object describes the curve passing between two such
* segments. Curves and segments represent two different ways of looking at the
* same thing, but focusing on different aspects. Curves for example offer many
* convenient ways to work with parts of the path, finding lengths, positions or
* tangents at given offsets.
*/
var Curve = this.Curve = Base.extend(/** @lends Curve# */{
2011-05-23 11:24:36 -04:00
/**
* Creates a new curve object.
*
2011-05-23 11:24:36 -04:00
* @param {Segment} segment1
* @param {Segment} segment2
*/
initialize: function(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
var count = arguments.length;
if (count == 0) {
2011-03-06 07:24:15 -05:00
this._segment1 = new Segment();
this._segment2 = new Segment();
} else if (count == 1) {
2011-03-06 07:24:15 -05:00
// TODO: If beans are not activated, this won't copy from
// an existing segment. OK?
this._segment1 = new Segment(arg0.segment1);
this._segment2 = new Segment(arg0.segment2);
} else if (count == 2) {
this._segment1 = new Segment(arg0);
this._segment2 = new Segment(arg1);
} else if (count == 4) {
2011-03-06 07:24:15 -05:00
this._segment1 = new Segment(arg0, null, arg1);
this._segment2 = new Segment(arg3, arg2, null);
} else if (count == 8) {
// An array as returned by getValues
var p1 = Point.create(arg0, arg1),
p2 = Point.create(arg6, arg7);
this._segment1 = new Segment(p1, null,
Point.create(arg2, arg3).subtract(p1));
this._segment2 = new Segment(p2,
Point.create(arg4, arg5).subtract(p2), null);
2011-03-06 07:24:15 -05:00
}
},
_changed: function() {
// Clear cached values.
delete this._length;
},
2011-03-06 07:24:15 -05:00
/**
* The first anchor point of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getPoint1: function() {
return this._segment1._point;
},
setPoint1: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment1._point.set(point.x, point.y);
},
/**
* The second anchor point of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getPoint2: function() {
return this._segment2._point;
},
setPoint2: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment2._point.set(point.x, point.y);
},
2011-03-06 07:24:15 -05:00
/**
* The handle point that describes the tangent in the first anchor point.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getHandle1: function() {
return this._segment1._handleOut;
},
setHandle1: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment1._handleOut.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the second anchor point.
*
2011-05-23 11:24:36 -04:00
* @type Point
* @bean
2011-03-06 07:24:15 -05:00
*/
getHandle2: function() {
return this._segment2._handleIn;
},
setHandle2: function(point) {
point = Point.read(arguments);
2011-03-06 07:24:15 -05:00
this._segment2._handleIn.set(point.x, point.y);
},
/**
* The first segment of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Segment
* @bean
2011-03-06 07:24:15 -05:00
*/
getSegment1: function() {
return this._segment1;
},
/**
* The second segment of the curve.
*
2011-05-23 11:24:36 -04:00
* @type Segment
* @bean
2011-03-06 07:24:15 -05:00
*/
getSegment2: function() {
return this._segment2;
},
2011-05-23 11:24:36 -04:00
/**
* The path that the curve belongs to.
*
2011-05-23 11:24:36 -04:00
* @type Path
* @bean
*/
2011-03-06 08:26:09 -05:00
getPath: function() {
return this._path;
},
2011-05-23 11:24:36 -04:00
/**
* The index of the curve in the {@link Path#curves} array.
*
* @type Number
2011-05-23 11:24:36 -04:00
* @bean
*/
2011-03-06 08:26:09 -05:00
getIndex: function() {
return this._segment1._index;
2011-03-06 08:26:09 -05:00
},
2011-05-23 11:24:36 -04:00
/**
* The next curve in the {@link Path#curves} array that the curve
* belongs to.
*
2011-05-23 11:24:36 -04:00
* @type Curve
* @bean
*/
2011-03-06 08:26:09 -05:00
getNext: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index + 1]
2011-04-30 18:22:29 -04:00
|| this._path._closed && curves[0]) || null;
2011-03-06 08:26:09 -05:00
},
2011-05-23 11:24:36 -04:00
/**
* The previous curve in the {@link Path#curves} array that the curve
* belongs to.
*
2011-05-23 11:24:36 -04:00
* @type Curve
* @bean
*/
2011-03-06 08:26:09 -05:00
getPrevious: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index - 1]
2011-04-30 18:22:29 -04:00
|| this._path._closed && curves[curves.length - 1]) || null;
2011-03-06 08:26:09 -05:00
},
2011-04-21 13:54:32 -04:00
2011-05-23 11:24:36 -04:00
/**
* Specifies whether the handles of the curve are selected.
*
* @type Boolean
2011-05-23 11:24:36 -04:00
* @bean
*/
2011-04-21 13:54:32 -04:00
isSelected: function() {
return this.getHandle1().isSelected() && this.getHandle2().isSelected();
2011-04-21 13:54:32 -04:00
},
2011-03-06 08:26:09 -05:00
2011-05-23 11:24:36 -04:00
setSelected: function(selected) {
this.getHandle1().setSelected(selected);
this.getHandle2().setSelected(selected);
},
getValues: function(matrix) {
return Curve.getValues(this._segment1, this._segment2, matrix);
},
getPoints: function(matrix) {
// Convert to array of absolute points
var coords = this.getValues(matrix),
points = [];
for (var i = 0; i < 8; i += 2)
points.push(Point.create(coords[i], coords[i + 1]));
return points;
},
2011-05-23 11:24:36 -04:00
// DOCS: document Curve#getLength(from, to)
/**
* The approximated length of the curve in points.
*
* @type Number
2011-05-23 11:24:36 -04:00
* @bean
*/
getLength: function(/* from, to */) {
// Hide parameters from Bootstrap so it injects bean too
var from = arguments[0],
to = arguments[1];
fullLength = arguments.length == 0 || from == 0 && to == 1;
if (fullLength && this._length != null)
return this._length;
var length = Curve.getLength(this.getValues(), from, to);
if (fullLength)
this._length = length;
return length;
},
getPart: function(from, to) {
return new Curve(Curve.getPart(this.getValues(), from, to));
},
/**
* Checks if this curve is linear, meaning it does not define any curve
* handle.
* @return {Boolean} {@true the curve is linear}
*/
isLinear: function() {
return this._segment1._handleOut.isZero()
&& this._segment2._handleIn.isZero();
},
// PORT: Add support for start parameter to Sg
// PORT: Rename #getParameter(length) -> #getParameterAt(offset)
// DOCS: Document #getParameter(length, start)
2011-05-23 11:24:36 -04:00
/**
* @param {Number} offset
* @param {Number} [start]
2011-07-04 17:30:25 -04:00
* @return {Number}
2011-05-23 11:24:36 -04:00
*/
getParameterAt: function(offset, start) {
return Curve.getParameterAt(this.getValues(), offset,
start !== undefined ? start : offset < 0 ? 1 : 0);
},
/**
* Returns the point on the curve at the specified position.
*
* @param {Number} parameter the position at which to find the point as
2011-07-05 07:17:34 -04:00
* a value between {@code 0} and {@code 1}.
* @return {Point}
*/
getPoint: function(parameter) {
return Curve.evaluate(this.getValues(), parameter, 0);
},
/**
* Returns the tangent point on the curve at the specified position.
*
* @param {Number} parameter the position at which to find the tangent
2011-07-05 07:17:34 -04:00
* point as a value between {@code 0} and {@code 1}.
*/
getTangent: function(parameter) {
return Curve.evaluate(this.getValues(), parameter, 1);
},
/**
* Returns the normal point on the curve at the specified position.
*
* @param {Number} parameter the position at which to find the normal
2011-07-05 07:17:34 -04:00
* point as a value between {@code 0} and {@code 1}.
*/
getNormal: function(parameter) {
return Curve.evaluate(this.getValues(), parameter, 2);
},
/**
* @param {Point} point
* @return {Number}
*/
getParameter: function(point) {
point = Point.read(point);
return Curve.getParameter(this.getValues(), point.x, point.y);
},
getCrossings: function(point, matrix, roots) {
// Implement the crossing number algorithm:
// http://en.wikipedia.org/wiki/Point_in_polygon
// Solve the y-axis cubic polynominal for point.y and count all
// solutions to the right of point.x as crossings.
var vals = this.getValues(matrix),
num = Curve.solveCubic(vals, 1, point.y, roots),
crossings = 0;
for (var i = 0; i < num; i++) {
var t = roots[i];
if (t >= 0 && t < 1 && Curve.evaluate(vals, t, 0).x > point.x) {
2011-07-04 19:20:25 -04:00
// If we're close to 0 and are not changing y-direction from the
// previous curve, do not count this root, as we're merely
2011-07-09 04:11:50 -04:00
// touching a tip. Passing 1 for Curve.evaluate()'s type means
// we're calculating tangents, and then check their y-slope for
// a change of direction:
if (t < Numerical.TOLERANCE && Curve.evaluate(
this.getPrevious().getValues(matrix), 1, 1).y
* Curve.evaluate(vals, t, 1).y >= 0)
continue;
crossings++;
}
}
return crossings;
},
// TODO: getLocation
// TODO: getIntersections
// TODO: adjustThroughPoint
2011-05-23 11:24:36 -04:00
/**
* Returns a reversed version of the curve, without modifying the curve
* itself.
*
2011-05-23 11:24:36 -04:00
* @return {Curve} a reversed version of the curve
*/
reverse: function() {
return new Curve(this._segment2.reverse(), this._segment1.reverse());
},
// TODO: divide
// TODO: split
2011-05-23 11:24:36 -04:00
/**
* Returns a copy of the curve.
*
2011-05-23 11:24:36 -04:00
* @return {Curve}
*/
clone: function() {
return new Curve(this._segment1, this._segment2);
},
2011-05-23 11:24:36 -04:00
/**
* @return {String} A string representation of the curve.
2011-05-23 11:24:36 -04:00
*/
toString: function() {
2011-05-02 03:57:55 -04:00
var parts = [ 'point1: ' + this._segment1._point ];
if (!this._segment1._handleOut.isZero())
parts.push('handle1: ' + this._segment1._handleOut);
if (!this._segment2._handleIn.isZero())
parts.push('handle2: ' + this._segment2._handleIn);
parts.push('point2: ' + this._segment2._point);
return '{ ' + parts.join(', ') + ' }';
},
statics: {
create: function(path, segment1, segment2) {
var curve = new Curve(Curve.dont);
curve._path = path;
curve._segment1 = segment1;
curve._segment2 = segment2;
return curve;
},
getValues: function(segment1, segment2, matrix) {
var p1 = segment1._point,
h1 = segment1._handleOut,
h2 = segment2._handleIn,
p2 = segment2._point,
coords = [
p1._x, p1._y,
p1._x + h1._x, p1._y + h1._y,
p2._x + h2._x, p2._y + h2._y,
p2._x, p2._y
];
return matrix
? matrix._transformCoordinates(coords, 0, coords, 0, 4)
: coords;
},
2011-03-07 11:51:12 -05:00
evaluate: function(v, t, type) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
x, y;
// Handle special case at beginning / end of curve
// PORT: Change in Sg too, so 0.000000000001 won't be
// required anymore
if (type == 0 && (t == 0 || t == 1)) {
x = t == 0 ? p1x : p2x;
y = t == 0 ? p1y : p2y;
} else {
// TODO: Find a better solution for this:
// Prevent tangents and normals of length 0:
var tMin = Numerical.TOLERANCE;
if (t < tMin && c1x == p1x && c1y == p1y)
t = tMin;
else if (t > 1 - tMin && c2x == p2x && c2y == p2y)
t = 1 - tMin;
// Calculate the polynomial coefficients.
var cx = 3 * (c1x - p1x),
bx = 3 * (c2x - c1x) - cx,
ax = p2x - p1x - cx - bx,
cy = 3 * (c1y - p1y),
by = 3 * (c2y - c1y) - cy,
ay = p2y - p1y - cy - by;
switch (type) {
case 0: // point
// Calculate the curve point at parameter value t
x = ((ax * t + bx) * t + cx) * t + p1x;
y = ((ay * t + by) * t + cy) * t + p1y;
break;
case 1: // tangent
case 2: // normal
// Simply use the derivation of the bezier function for both
// the x and y coordinates:
x = (3 * ax * t + 2 * bx) * t + cx;
y = (3 * ay * t + 2 * by) * t + cy;
break;
}
}
// The normal is simply the rotated tangent:
// TODO: Rotate normals the other way in Scriptographer too?
// (Depending on orientation, I guess?)
return type == 2 ? new Point(y, -x) : new Point(x, y);
},
subdivide: function(v, t) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7];
if (t === undefined)
t = 0.5;
2011-07-05 07:17:34 -04:00
// Triangle computation, with loops unrolled.
var u = 1 - t,
// Interpolate from 4 to 3 points
p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y,
p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y,
p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y,
// Interpolate from 3 to 2 points
p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y,
p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y,
// Interpolate from 2 points to 1 point
p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y;
// We now have all the values we need to build the subcurves:
return [
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
];
},
// Converts from the point coordinates (p1, c1, c2, p2) for one axis to
2011-07-06 09:31:16 -04:00
// the polynomial coefficients and solves the polynomial for val
solveCubic: function (v, coord, val, roots) {
var p1 = v[coord],
c1 = v[coord + 2],
c2 = v[coord + 4],
p2 = v[coord + 6],
c = 3 * (c1 - p1),
b = 3 * (c2 - c1) - c,
a = p2 - p1 - c - b;
return Numerical.solveCubic(a, b, c, p1 - val, roots,
Numerical.TOLERANCE);
},
getParameter: function(v, x, y) {
var txs = [],
tys = [],
sx = Curve.solveCubic(v, 0, x, txs),
sy = Curve.solveCubic(v, 1, y, tys),
tx, ty;
// sx, sy == -1 means infinite solutions:
// Loop through all solutions for x and match with solutions for y,
// to see if we either have a matching pair, or infinite solutions
// for one or the other.
for (var cx = 0; sx == -1 || cx < sx;) {
if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) {
for (var cy = 0; sy == -1 || cy < sy;) {
if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) {
// Handle infinite solutions by assigning root of
// the other polynomial
if (sx == -1) tx = ty;
else if (sy == -1) ty = tx;
// Use average if we're within tolerance
if (Math.abs(tx - ty) < Numerical.TOLERANCE)
return (tx + ty) * 0.5;
}
}
// Avoid endless loops here: If sx is infinite and there was
// no fitting ty, there's no solution for this bezier
if (sx == -1)
2011-07-07 10:09:02 -04:00
break;
}
}
return null;
},
// TODO: Find better name
getPart: function(v, from, to) {
if (from > 0)
v = Curve.subdivide(v, from)[1]; // [1] right
// Interpolate the parameter at 'to' in the new curve and
// cut there.
if (to < 1)
v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left
return v;
},
isFlatEnough: function(v) {
2011-07-07 17:00:16 -04:00
// Code from Nearest Point-on-Curve Problem and by Philip J.
// Schneider from "Graphics Gems", Academic Press, 1990, adapted
// and optimised for cubic bezier curves.
// Derive the implicit equation for line connecting first and last
// control points
/*
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
a = p1y - p2y,
2011-07-07 17:00:16 -04:00
b = p2x - p1x,
c = p1x * p2y - p2x * p1y,
2011-07-07 17:02:26 -04:00
// Find the largest distance from each of the points to the line
v1 = a * c1x + b * c1y + c,
2011-07-07 17:00:16 -04:00
v2 = a * c2x + b * c2y + c;
// Compute intercepts of bounding box
return Math.abs((v1 * v1 + v2 * v2) / (a * (a * a + b * b))) < 0.005;
*/
// Inspired by Skia, but to be tested:
// Calculate 1/3 (m1) and 2/3 (m2) along the line between start (p1)
// and end (p2), measure distance from there the control points and
// see if they are further away than 1/2.
// Seems all very inaccurate, especially since the distance
// measurement is just the bigger one of x / y...
// TODO: Find a more accurate and still fast way to determine this.
/*
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
vx = (p2x - p1x) / 3,
vy = (p2y - p1y) / 3,
m1x = p1x + vx,
m1y = p1y + vy,
m2x = p2x - vx,
m2y = p2y - vy;
return Math.max(
Math.abs(m1x - c1x), Math.abs(m1y - c1y),
Math.abs(m2x - c1x), Math.abs(m1y - c1y)) < 1 / 2;
2011-07-07 17:00:16 -04:00
*/
// Thanks to Kaspar Fischer for the following:
// http://www.inf.ethz.ch/personal/fischerk/pubs/bez.pdf
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ux = 3 * c1x - 2 * p1x - p2x,
uy = 3 * c1y - 2 * p1y - p2y,
vx = 3 * c2x - 2 * p2x - p1x,
vy = 3 * c2y - 2 * p2y - p1y;
ux *= ux;
uy *= uy;
vx *= vx;
vy *= vy;
if (ux < vx)
ux = vx;
if (uy < vy)
uy = vy;
// Tolerance is 16 * tol ^ 2
return ux + uy <= 16 * Numerical.TOLERNACE * Numerical.TOLERNACE;
}
}
}, new function() { // Scope for methods that require numerical integration
function getLengthIntegrand(v) {
// Calculate the coefficients of a Bezier derivative.
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
bx = 6 * (p1x + c2x) - 12 * c1x,
cx = 3 * (c1x - p1x),
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
by = 6 * (p1y + c2y) - 12 * c1y,
cy = 3 * (c1y - p1y);
return function(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
2011-05-02 06:23:42 -04:00
};
}
2011-03-25 13:58:20 -04:00
// Amount of integral evaluations for the interval 0 <= a < b <= 1
function getIterations(a, b) {
// Guess required precision based and size of range...
// TODO: There should be much better educated guesses for
// this. Also, what does this depend on? Required precision?
return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32)));
}
return {
statics: true,
getLength: function(v, a, b) {
if (a === undefined)
a = 0;
if (b === undefined)
b = 1;
// if (p1 == c1 && p2 == c2):
if (v[0] == v[2] && v[1] == v[3] && v[6] == v[4] && v[7] == v[5]) {
// Straight line
var dx = v[6] - v[0], // p2x - p1x
dy = v[7] - v[1]; // p2y - p1y
return (b - a) * Math.sqrt(dx * dx + dy * dy);
}
var ds = getLengthIntegrand(v);
return Numerical.integrate(ds, a, b, getIterations(a, b));
},
getParameterAt: function(v, offset, start) {
if (offset == 0)
return start;
// See if we're going forward or backward, and handle cases
// differently
var forward = offset > 0,
a = forward ? start : 0,
b = forward ? 1 : start,
offset = Math.abs(offset),
// Use integrand to calculate both range length and part
// lengths in f(t) below.
ds = getLengthIntegrand(v),
// Get length of total range
rangeLength = Numerical.integrate(ds, a, b,
getIterations(a, b));
if (offset >= rangeLength)
return forward ? b : a;
// Use offset / rangeLength for an initial guess for t, to
// bring us closer:
var guess = offset / rangeLength,
length = 0;
// Iteratively calculate curve range lengths, and add them up,
// using integration precision depending on the size of the
// range. This is much faster and also more precise than not
// modifing start and calculating total length each time.
function f(t) {
var count = getIterations(start, t);
length += start < t
? Numerical.integrate(ds, start, t, count)
: -Numerical.integrate(ds, t, start, count);
start = t;
return length - offset;
}
return Numerical.findRoot(f, ds,
forward ? a + guess : b - guess, // Initial guess for x
a, b, 16, Numerical.TOLERANCE);
}
};
}, new function() { // Scope for nearest point on curve problem
// Solving the Nearest Point-on-Curve Problem and A Bezier-Based Root-Finder
// by Philip J. Schneider from "Graphics Gems", Academic Press, 1990
// Optimised for Paper.js
var maxDepth = 32,
epsilon = Math.pow(2, -maxDepth - 1);
2011-07-07 10:09:02 -04:00
var zCubic = [
[1.0, 0.6, 0.3, 0.1],
[0.4, 0.6, 0.6, 0.4],
[0.1, 0.3, 0.6, 1.0]
];
var xAxis = new Line(new Point(0, 0), new Point(1, 0));
/**
* Given a point and a Bezier curve, generate a 5th-degree Bezier-format
* equation whose solution finds the point on the curve nearest the
* user-defined point.
*/
function toBezierForm(v, point) {
var n = 3, // degree of B(t)
degree = 5, // degree of B(t) . P
c = [],
d = [],
cd = [],
w = [];
for(var i = 0; i <= n; i++) {
// Determine the c's -- these are vectors created by subtracting
// point point from each of the control points
c[i] = v[i].subtract(point);
// Determine the d's -- these are vectors created by subtracting
// each control point from the next
if (i < n)
d[i] = v[i + 1].subtract(v[i]).multiply(n);
}
// Create the c,d table -- this is a table of dot products of the
// c's and d's
for (var row = 0; row < n; row++) {
cd[row] = [];
2011-07-07 10:09:02 -04:00
for (var column = 0; column <= n; column++)
cd[row][column] = d[row].dot(c[column]);
}
// Now, apply the z's to the dot products, on the skew diagonal
// Also, set up the x-values, making these "points"
for (var i = 0; i <= degree; i++)
w[i] = new Point(i / degree, 0);
for (k = 0; k <= degree; k++) {
var lb = Math.max(0, k - n + 1),
ub = Math.min(k, n);
for (var i = lb; i <= ub; i++) {
var j = k - i;
w[k].y += cd[j][i] * zCubic[j][i];
}
}
return w;
}
/**
* Given a 5th-degree equation in Bernstein-Bezier form, find all of the
* roots in the interval [0, 1]. Return the number of roots found.
*/
function findRoots(w, depth) {
switch (countCrossings(w)) {
case 0:
// No solutions here
return [];
case 1:
// Unique solution
// Stop recursion when the tree is deep enough
// if deep enough, return 1 solution at midpoint
if (depth >= maxDepth)
return [0.5 * (w[0].x + w[5].x)];
// Compute intersection of chord from first control point to last
// with x-axis.
if (isFlatEnough(w)) {
var line = new Line(w[0], w[5], true);
// Compare the line's squared length with EPSILON. If we're
// below, #intersect() will return null because of division
// by near-zero.
return [ line.vector.getLength(true) <= Numerical.EPSILON
? line.point.x
: xAxis.intersect(line).x ];
}
}
// Otherwise, solve recursively after
// subdividing control polygon
var p = [[]],
left = [],
right = [];
for (var j = 0; j <= 5; j++)
p[0][j] = new Point(w[j]);
// Triangle computation
for (var i = 1; i <= 5; i++) {
p[i] = [];
for (var j = 0 ; j <= 5 - i; j++)
p[i][j] = p[i - 1][j].add(p[i - 1][j + 1]).multiply(0.5);
}
for (var j = 0; j <= 5; j++) {
left[j] = p[j][0];
right[j] = p[5 - j][j];
}
return findRoots(left, depth + 1).concat(findRoots(right, depth + 1));
}
/**
* Count the number of times a Bezier control polygon crosses the x-axis.
* This number is >= the number of roots.
*/
function countCrossings(v) {
var crossings = 0,
prevSign = null;
for (var i = 0, l = v.length; i < l; i++) {
var sign = v[i].y < 0 ? -1 : 1;
if (prevSign != null && sign != prevSign)
crossings++;
prevSign = sign;
}
return crossings;
}
/**
* Check if the control polygon of a Bezier curve is flat enough for
* recursive subdivision to bottom out.
*/
function isFlatEnough(v) {
// Find the perpendicular distance from each interior control point to
// line connecting v[0] and v[degree]
// Derive the implicit equation for line connecting first
// and last control points
var n = v.length - 1,
a = v[0].y - v[n].y,
b = v[n].x - v[0].x,
c = v[0].x * v[n].y - v[n].x * v[0].y,
maxAbove = 0,
maxBelow = 0;
// Find the largest distance
for (var i = 1; i < n; i++) {
// Compute distance from each of the points to that line
var val = a * v[i].x + b * v[i].y + c,
2011-07-08 16:26:22 -04:00
dist = val * val;
if (val < 0 && dist > maxBelow) {
maxBelow = dist;
} else if (dist > maxAbove) {
maxAbove = dist;
}
}
// Compute intercepts of bounding box
2011-07-08 16:26:22 -04:00
return Math.abs((maxAbove + maxBelow) / (2 * a * (a * a + b * b)))
< epsilon;
}
return {
getNearestLocation: function(point, matrix) {
var w = toBezierForm(this.getPoints(matrix), point);
// Also look at beginning and end of curve (t = 0 / 1)
var roots = findRoots(w, 0).concat([0, 1]);
2011-07-06 16:21:49 -04:00
var minDist = Infinity,
minT,
minPoint;
2011-07-06 16:21:49 -04:00
// There are always roots, since we add [0, 1] above.
for (var i = 0; i < roots.length; i++) {
2011-07-06 16:21:49 -04:00
var pt = this.getPoint(roots[i]),
dist = point.getDistance(pt, true);
// We're comparing squared distances
2011-07-06 16:21:49 -04:00
if (dist < minDist) {
minDist = dist;
minT = roots[i];
2011-07-06 16:21:49 -04:00
minPoint = pt;
}
}
return new CurveLocation(this, minT, minPoint, Math.sqrt(minDist));
},
getNearestPoint: function(point, matrix) {
return this.getNearestLocation(point, matrix).getPoint();
}
};
});