2011-03-06 19:50:44 -05:00
|
|
|
/*
|
2013-01-28 21:03:27 -05:00
|
|
|
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
|
2011-03-07 20:41:50 -05:00
|
|
|
* http://paperjs.org/
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2014-01-03 19:47:16 -05:00
|
|
|
* Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey
|
|
|
|
* http://scratchdisk.com/ & http://jonathanpuckey.com/
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-07-01 06:17:45 -04:00
|
|
|
* Distributed under the MIT license. See LICENSE file for details.
|
|
|
|
*
|
2011-03-07 20:41:50 -05:00
|
|
|
* All rights reserved.
|
2011-03-06 19:50:44 -05:00
|
|
|
*/
|
|
|
|
|
2011-06-22 18:56:05 -04:00
|
|
|
/**
|
|
|
|
* @name Curve
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-06-27 08:58:17 -04:00
|
|
|
* @class The Curve object represents the parts of a path that are connected by
|
2011-06-27 09:07:08 -04:00
|
|
|
* two following {@link Segment} objects. The curves of a path can be accessed
|
|
|
|
* through its {@link Path#curves} array.
|
2011-06-27 08:58:17 -04:00
|
|
|
*
|
|
|
|
* While a segment describe the anchor point and its incoming and outgoing
|
|
|
|
* handles, a Curve object describes the curve passing between two such
|
|
|
|
* segments. Curves and segments represent two different ways of looking at the
|
|
|
|
* same thing, but focusing on different aspects. Curves for example offer many
|
|
|
|
* convenient ways to work with parts of the path, finding lengths, positions or
|
|
|
|
* tangents at given offsets.
|
2011-06-22 18:56:05 -04:00
|
|
|
*/
|
2013-05-27 15:48:58 -04:00
|
|
|
var Curve = Base.extend(/** @lends Curve# */{
|
2014-08-16 13:24:54 -04:00
|
|
|
_class: 'Curve',
|
2014-11-30 14:27:14 -05:00
|
|
|
|
2014-08-16 13:24:54 -04:00
|
|
|
/**
|
|
|
|
* Creates a new curve object.
|
|
|
|
*
|
|
|
|
* @name Curve#initialize
|
|
|
|
* @param {Segment} segment1
|
|
|
|
* @param {Segment} segment2
|
|
|
|
*/
|
|
|
|
/**
|
|
|
|
* Creates a new curve object.
|
|
|
|
*
|
|
|
|
* @name Curve#initialize
|
|
|
|
* @param {Point} point1
|
|
|
|
* @param {Point} handle1
|
|
|
|
* @param {Point} handle2
|
|
|
|
* @param {Point} point2
|
|
|
|
*/
|
|
|
|
/**
|
|
|
|
* Creates a new curve object.
|
|
|
|
*
|
|
|
|
* @name Curve#initialize
|
|
|
|
* @ignore
|
|
|
|
* @param {Number} x1
|
|
|
|
* @param {Number} y1
|
|
|
|
* @param {Number} handle1x
|
|
|
|
* @param {Number} handle1y
|
|
|
|
* @param {Number} handle2x
|
|
|
|
* @param {Number} handle2y
|
|
|
|
* @param {Number} x2
|
|
|
|
* @param {Number} y2
|
|
|
|
*/
|
|
|
|
initialize: function Curve(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
|
|
|
|
var count = arguments.length;
|
|
|
|
if (count === 3) {
|
|
|
|
// Undocumented internal constructor, used by Path#getCurves()
|
|
|
|
// new Segment(path, segment1, segment2);
|
|
|
|
this._path = arg0;
|
|
|
|
this._segment1 = arg1;
|
|
|
|
this._segment2 = arg2;
|
|
|
|
} else if (count === 0) {
|
|
|
|
this._segment1 = new Segment();
|
|
|
|
this._segment2 = new Segment();
|
|
|
|
} else if (count === 1) {
|
|
|
|
// new Segment(segment);
|
|
|
|
// Note: This copies from existing segments through bean getters
|
|
|
|
this._segment1 = new Segment(arg0.segment1);
|
|
|
|
this._segment2 = new Segment(arg0.segment2);
|
|
|
|
} else if (count === 2) {
|
|
|
|
// new Segment(segment1, segment2);
|
|
|
|
this._segment1 = new Segment(arg0);
|
|
|
|
this._segment2 = new Segment(arg1);
|
|
|
|
} else {
|
|
|
|
var point1, handle1, handle2, point2;
|
|
|
|
if (count === 4) {
|
|
|
|
point1 = arg0;
|
|
|
|
handle1 = arg1;
|
|
|
|
handle2 = arg2;
|
|
|
|
point2 = arg3;
|
|
|
|
} else if (count === 8) {
|
|
|
|
// Convert getValue() array back to points and handles so we
|
|
|
|
// can create segments for those.
|
|
|
|
point1 = [arg0, arg1];
|
|
|
|
point2 = [arg6, arg7];
|
|
|
|
handle1 = [arg2 - arg0, arg3 - arg1];
|
|
|
|
handle2 = [arg4 - arg6, arg5 - arg7];
|
|
|
|
}
|
|
|
|
this._segment1 = new Segment(point1, null, handle1);
|
|
|
|
this._segment2 = new Segment(point2, handle2, null);
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
_changed: function() {
|
|
|
|
// Clear cached values.
|
|
|
|
this._length = this._bounds = undefined;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The first anchor point of the curve.
|
|
|
|
*
|
|
|
|
* @type Point
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getPoint1: function() {
|
|
|
|
return this._segment1._point;
|
|
|
|
},
|
|
|
|
|
|
|
|
setPoint1: function(/* point */) {
|
|
|
|
var point = Point.read(arguments);
|
|
|
|
this._segment1._point.set(point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The second anchor point of the curve.
|
|
|
|
*
|
|
|
|
* @type Point
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getPoint2: function() {
|
|
|
|
return this._segment2._point;
|
|
|
|
},
|
|
|
|
|
|
|
|
setPoint2: function(/* point */) {
|
|
|
|
var point = Point.read(arguments);
|
|
|
|
this._segment2._point.set(point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The handle point that describes the tangent in the first anchor point.
|
|
|
|
*
|
|
|
|
* @type Point
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getHandle1: function() {
|
|
|
|
return this._segment1._handleOut;
|
|
|
|
},
|
|
|
|
|
|
|
|
setHandle1: function(/* point */) {
|
|
|
|
var point = Point.read(arguments);
|
|
|
|
this._segment1._handleOut.set(point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The handle point that describes the tangent in the second anchor point.
|
|
|
|
*
|
|
|
|
* @type Point
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getHandle2: function() {
|
|
|
|
return this._segment2._handleIn;
|
|
|
|
},
|
|
|
|
|
|
|
|
setHandle2: function(/* point */) {
|
|
|
|
var point = Point.read(arguments);
|
|
|
|
this._segment2._handleIn.set(point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The first segment of the curve.
|
|
|
|
*
|
|
|
|
* @type Segment
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getSegment1: function() {
|
|
|
|
return this._segment1;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The second segment of the curve.
|
|
|
|
*
|
|
|
|
* @type Segment
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getSegment2: function() {
|
|
|
|
return this._segment2;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The path that the curve belongs to.
|
|
|
|
*
|
|
|
|
* @type Path
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getPath: function() {
|
|
|
|
return this._path;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The index of the curve in the {@link Path#curves} array.
|
|
|
|
*
|
|
|
|
* @type Number
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getIndex: function() {
|
|
|
|
return this._segment1._index;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The next curve in the {@link Path#curves} array that the curve
|
|
|
|
* belongs to.
|
|
|
|
*
|
|
|
|
* @type Curve
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getNext: function() {
|
|
|
|
var curves = this._path && this._path._curves;
|
|
|
|
return curves && (curves[this._segment1._index + 1]
|
|
|
|
|| this._path._closed && curves[0]) || null;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The previous curve in the {@link Path#curves} array that the curve
|
|
|
|
* belongs to.
|
|
|
|
*
|
|
|
|
* @type Curve
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getPrevious: function() {
|
|
|
|
var curves = this._path && this._path._curves;
|
|
|
|
return curves && (curves[this._segment1._index - 1]
|
|
|
|
|| this._path._closed && curves[curves.length - 1]) || null;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Specifies whether the points and handles of the curve are selected.
|
|
|
|
*
|
|
|
|
* @type Boolean
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
isSelected: function() {
|
|
|
|
return this.getPoint1().isSelected()
|
|
|
|
&& this.getHandle2().isSelected()
|
|
|
|
&& this.getHandle2().isSelected()
|
|
|
|
&& this.getPoint2().isSelected();
|
|
|
|
},
|
|
|
|
|
|
|
|
setSelected: function(selected) {
|
|
|
|
this.getPoint1().setSelected(selected);
|
|
|
|
this.getHandle1().setSelected(selected);
|
|
|
|
this.getHandle2().setSelected(selected);
|
|
|
|
this.getPoint2().setSelected(selected);
|
|
|
|
},
|
|
|
|
|
|
|
|
getValues: function(matrix) {
|
|
|
|
return Curve.getValues(this._segment1, this._segment2, matrix);
|
|
|
|
},
|
|
|
|
|
|
|
|
getPoints: function() {
|
|
|
|
// Convert to array of absolute points
|
|
|
|
var coords = this.getValues(),
|
|
|
|
points = [];
|
|
|
|
for (var i = 0; i < 8; i += 2)
|
|
|
|
points.push(new Point(coords[i], coords[i + 1]));
|
|
|
|
return points;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The approximated length of the curve in points.
|
|
|
|
*
|
|
|
|
* @type Number
|
|
|
|
* @bean
|
|
|
|
*/
|
|
|
|
getLength: function() {
|
|
|
|
if (this._length == null) {
|
|
|
|
// Use simple point distance for linear curves
|
|
|
|
this._length = this.isLinear()
|
|
|
|
? this._segment2._point.getDistance(this._segment1._point)
|
|
|
|
: Curve.getLength(this.getValues(), 0, 1);
|
|
|
|
}
|
|
|
|
return this._length;
|
|
|
|
},
|
|
|
|
|
|
|
|
getArea: function() {
|
|
|
|
return Curve.getArea(this.getValues());
|
|
|
|
},
|
|
|
|
|
|
|
|
getPart: function(from, to) {
|
|
|
|
return new Curve(Curve.getPart(this.getValues(), from, to));
|
|
|
|
},
|
|
|
|
|
|
|
|
// DOCS: Curve#getPartLength(from, to)
|
|
|
|
getPartLength: function(from, to) {
|
|
|
|
return Curve.getLength(this.getValues(), from, to);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Checks if this curve is linear, meaning it does not define any curve
|
|
|
|
* handle.
|
|
|
|
|
|
|
|
* @return {Boolean} {@true if the curve is linear}
|
|
|
|
*/
|
|
|
|
isLinear: function() {
|
|
|
|
return this._segment1._handleOut.isZero()
|
|
|
|
&& this._segment2._handleIn.isZero();
|
|
|
|
},
|
|
|
|
|
|
|
|
isHorizontal: function() {
|
|
|
|
return this.isLinear() && Numerical.isZero(
|
|
|
|
this._segment1._point._y - this._segment2._point._y);
|
|
|
|
},
|
|
|
|
|
|
|
|
// DOCS: Curve#getIntersections()
|
|
|
|
getIntersections: function(curve) {
|
|
|
|
return Curve.getIntersections(this.getValues(), curve.getValues(),
|
|
|
|
this, curve, []);
|
|
|
|
},
|
|
|
|
|
|
|
|
// TODO: adjustThroughPoint
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Private method that handles all types of offset / isParameter pairs and
|
|
|
|
* converts it to a curve parameter.
|
|
|
|
*/
|
|
|
|
_getParameter: function(offset, isParameter) {
|
|
|
|
return isParameter
|
|
|
|
? offset
|
|
|
|
// Accept CurveLocation objects, and objects that act like
|
|
|
|
// them:
|
|
|
|
: offset && offset.curve === this
|
|
|
|
? offset.parameter
|
|
|
|
: offset === undefined && isParameter === undefined
|
|
|
|
? 0.5 // default is in the middle
|
|
|
|
: this.getParameterAt(offset, 0);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Divides the curve into two curves at the given offset. The curve itself
|
|
|
|
* is modified and becomes the first part, the second part is returned as a
|
|
|
|
* new curve. If the modified curve belongs to a path item, the second part
|
|
|
|
* is also added to the path.
|
|
|
|
*
|
|
|
|
* @name Curve#divide
|
|
|
|
* @function
|
|
|
|
* @param {Number} [offset=0.5] the offset on the curve at which to split,
|
|
|
|
* or the curve time parameter if {@code isParameter} is {@code true}
|
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Curve} the second part of the divided curve
|
|
|
|
*/
|
|
|
|
// TODO: Rename to divideAt()?
|
|
|
|
divide: function(offset, isParameter, ignoreLinear) {
|
|
|
|
var parameter = this._getParameter(offset, isParameter),
|
|
|
|
tolerance = /*#=*/Numerical.TOLERANCE,
|
|
|
|
res = null;
|
|
|
|
if (parameter > tolerance && parameter < 1 - tolerance) {
|
|
|
|
var parts = Curve.subdivide(this.getValues(), parameter),
|
|
|
|
isLinear = ignoreLinear ? false : this.isLinear(),
|
|
|
|
left = parts[0],
|
|
|
|
right = parts[1];
|
|
|
|
|
|
|
|
// Write back the results:
|
|
|
|
if (!isLinear) {
|
|
|
|
this._segment1._handleOut.set(left[2] - left[0],
|
|
|
|
left[3] - left[1]);
|
|
|
|
// segment2 is the end segment. By inserting newSegment
|
|
|
|
// between segment1 and 2, 2 becomes the end segment.
|
|
|
|
// Convert absolute -> relative
|
|
|
|
this._segment2._handleIn.set(right[4] - right[6],
|
|
|
|
right[5] - right[7]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create the new segment, convert absolute -> relative:
|
|
|
|
var x = left[6], y = left[7],
|
|
|
|
segment = new Segment(new Point(x, y),
|
|
|
|
!isLinear && new Point(left[4] - x, left[5] - y),
|
|
|
|
!isLinear && new Point(right[2] - x, right[3] - y));
|
|
|
|
|
|
|
|
// Insert it in the segments list, if needed:
|
|
|
|
if (this._path) {
|
|
|
|
// Insert at the end if this curve is a closing curve of a
|
|
|
|
// closed path, since otherwise it would be inserted at 0.
|
|
|
|
if (this._segment1._index > 0 && this._segment2._index === 0) {
|
|
|
|
this._path.add(segment);
|
|
|
|
} else {
|
|
|
|
this._path.insert(this._segment2._index, segment);
|
|
|
|
}
|
|
|
|
// The way Path#_add handles curves, this curve will always
|
|
|
|
// become the owner of the newly inserted segment.
|
|
|
|
// TODO: I expect this.getNext() to produce the correct result,
|
|
|
|
// but since we're inserting differently in _add (something
|
|
|
|
// linked with CurveLocation#divide()), this is not the case...
|
|
|
|
res = this; // this.getNext();
|
|
|
|
} else {
|
|
|
|
// otherwise create it from the result of split
|
|
|
|
var end = this._segment2;
|
|
|
|
this._segment2 = segment;
|
|
|
|
res = new Curve(segment, end);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Splits the path this curve belongs to at the given offset. After
|
|
|
|
* splitting, the path will be open. If the path was open already, splitting
|
|
|
|
* will result in two paths.
|
|
|
|
*
|
|
|
|
* @name Curve#split
|
|
|
|
* @function
|
|
|
|
* @param {Number} [offset=0.5] the offset on the curve at which to split,
|
|
|
|
* or the curve time parameter if {@code isParameter} is {@code true}
|
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Path} the newly created path after splitting, if any
|
|
|
|
* @see Path#split(index, parameter)
|
|
|
|
*/
|
|
|
|
// TODO: Rename to splitAt()?
|
|
|
|
split: function(offset, isParameter) {
|
|
|
|
return this._path
|
|
|
|
? this._path.split(this._segment1._index,
|
|
|
|
this._getParameter(offset, isParameter))
|
|
|
|
: null;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a reversed version of the curve, without modifying the curve
|
|
|
|
* itself.
|
|
|
|
*
|
|
|
|
* @return {Curve} a reversed version of the curve
|
|
|
|
*/
|
|
|
|
reverse: function() {
|
|
|
|
return new Curve(this._segment2.reverse(), this._segment1.reverse());
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes the curve from the path that it belongs to, by merging its two
|
|
|
|
* path segments.
|
|
|
|
* @return {Boolean} {@true if the curve was removed}
|
|
|
|
*/
|
|
|
|
remove: function() {
|
|
|
|
var removed = false;
|
|
|
|
if (this._path) {
|
|
|
|
var segment2 = this._segment2,
|
|
|
|
handleOut = segment2._handleOut;
|
|
|
|
removed = segment2.remove();
|
|
|
|
if (removed)
|
|
|
|
this._segment1._handleOut.set(handleOut.x, handleOut.y);
|
|
|
|
}
|
|
|
|
return removed;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a copy of the curve.
|
|
|
|
*
|
|
|
|
* @return {Curve}
|
|
|
|
*/
|
|
|
|
clone: function() {
|
|
|
|
return new Curve(this._segment1, this._segment2);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @return {String} a string representation of the curve
|
|
|
|
*/
|
|
|
|
toString: function() {
|
|
|
|
var parts = [ 'point1: ' + this._segment1._point ];
|
|
|
|
if (!this._segment1._handleOut.isZero())
|
|
|
|
parts.push('handle1: ' + this._segment1._handleOut);
|
|
|
|
if (!this._segment2._handleIn.isZero())
|
|
|
|
parts.push('handle2: ' + this._segment2._handleIn);
|
|
|
|
parts.push('point2: ' + this._segment2._point);
|
|
|
|
return '{ ' + parts.join(', ') + ' }';
|
|
|
|
},
|
2011-04-30 18:29:10 -04:00
|
|
|
|
2012-12-27 12:38:55 -05:00
|
|
|
// Mess with indentation in order to get more line-space below...
|
|
|
|
statics: {
|
2014-08-16 13:24:54 -04:00
|
|
|
getValues: function(segment1, segment2, matrix) {
|
|
|
|
var p1 = segment1._point,
|
|
|
|
h1 = segment1._handleOut,
|
|
|
|
h2 = segment2._handleIn,
|
|
|
|
p2 = segment2._point,
|
|
|
|
values = [
|
|
|
|
p1._x, p1._y,
|
|
|
|
p1._x + h1._x, p1._y + h1._y,
|
|
|
|
p2._x + h2._x, p2._y + h2._y,
|
|
|
|
p2._x, p2._y
|
|
|
|
];
|
|
|
|
if (matrix)
|
2014-09-20 05:06:25 -04:00
|
|
|
matrix._transformCoordinates(values, values, 4);
|
2014-08-16 13:24:54 -04:00
|
|
|
return values;
|
|
|
|
},
|
|
|
|
|
2014-09-20 05:08:20 -04:00
|
|
|
// TODO: Instead of constants for type, use a "enum" and code substitution.
|
2014-08-16 13:24:54 -04:00
|
|
|
evaluate: function(v, t, type) {
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7],
|
|
|
|
tolerance = /*#=*/Numerical.TOLERANCE,
|
|
|
|
x, y;
|
|
|
|
|
|
|
|
// Handle special case at beginning / end of curve
|
|
|
|
if (type === 0 && (t < tolerance || t > 1 - tolerance)) {
|
|
|
|
var isZero = t < tolerance;
|
|
|
|
x = isZero ? p1x : p2x;
|
|
|
|
y = isZero ? p1y : p2y;
|
|
|
|
} else {
|
|
|
|
// Calculate the polynomial coefficients.
|
|
|
|
var cx = 3 * (c1x - p1x),
|
|
|
|
bx = 3 * (c2x - c1x) - cx,
|
|
|
|
ax = p2x - p1x - cx - bx,
|
|
|
|
|
|
|
|
cy = 3 * (c1y - p1y),
|
|
|
|
by = 3 * (c2y - c1y) - cy,
|
|
|
|
ay = p2y - p1y - cy - by;
|
|
|
|
if (type === 0) {
|
|
|
|
// Calculate the curve point at parameter value t
|
|
|
|
x = ((ax * t + bx) * t + cx) * t + p1x;
|
|
|
|
y = ((ay * t + by) * t + cy) * t + p1y;
|
|
|
|
} else {
|
|
|
|
// 1: tangent, 1st derivative
|
|
|
|
// 2: normal, 1st derivative
|
|
|
|
// 3: curvature, 1st derivative & 2nd derivative
|
|
|
|
// Prevent tangents and normals of length 0:
|
|
|
|
// http://stackoverflow.com/questions/10506868/
|
|
|
|
if (t < tolerance && c1x === p1x && c1y === p1y
|
|
|
|
|| t > 1 - tolerance && c2x === p2x && c2y === p2y) {
|
2014-11-08 20:16:22 -05:00
|
|
|
x = c2x - c1x;
|
|
|
|
y = c2y - c1y;
|
2014-08-16 13:24:54 -04:00
|
|
|
} else if (t < tolerance) {
|
|
|
|
x = cx;
|
|
|
|
y = cy;
|
|
|
|
} else if (t > 1 - tolerance) {
|
|
|
|
x = 3 * (p2x - c2x);
|
|
|
|
y = 3 * (p2y - c2y);
|
|
|
|
} else {
|
|
|
|
// Simply use the derivation of the bezier function for both
|
|
|
|
// the x and y coordinates:
|
|
|
|
x = (3 * ax * t + 2 * bx) * t + cx;
|
|
|
|
y = (3 * ay * t + 2 * by) * t + cy;
|
|
|
|
}
|
|
|
|
if (type === 3) {
|
|
|
|
// Calculate 2nd derivative, and curvature from there:
|
|
|
|
// http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
|
|
|
|
// k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
|
|
|
|
var x2 = 6 * ax * t + 2 * bx,
|
|
|
|
y2 = 6 * ay * t + 2 * by;
|
|
|
|
return (x * y2 - y * x2) / Math.pow(x * x + y * y, 3 / 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// The normal is simply the rotated tangent:
|
|
|
|
return type === 2 ? new Point(y, -x) : new Point(x, y);
|
|
|
|
},
|
|
|
|
|
|
|
|
subdivide: function(v, t) {
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7];
|
|
|
|
if (t === undefined)
|
|
|
|
t = 0.5;
|
|
|
|
// Triangle computation, with loops unrolled.
|
|
|
|
var u = 1 - t,
|
|
|
|
// Interpolate from 4 to 3 points
|
|
|
|
p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y,
|
|
|
|
p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y,
|
|
|
|
p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y,
|
|
|
|
// Interpolate from 3 to 2 points
|
|
|
|
p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y,
|
|
|
|
p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y,
|
|
|
|
// Interpolate from 2 points to 1 point
|
|
|
|
p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y;
|
|
|
|
// We now have all the values we need to build the sub-curves:
|
|
|
|
return [
|
|
|
|
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
|
|
|
|
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
|
|
|
|
];
|
|
|
|
},
|
|
|
|
|
|
|
|
// Converts from the point coordinates (p1, c1, c2, p2) for one axis to
|
|
|
|
// the polynomial coefficients and solves the polynomial for val
|
|
|
|
solveCubic: function (v, coord, val, roots, min, max) {
|
|
|
|
var p1 = v[coord],
|
|
|
|
c1 = v[coord + 2],
|
|
|
|
c2 = v[coord + 4],
|
|
|
|
p2 = v[coord + 6],
|
|
|
|
c = 3 * (c1 - p1),
|
|
|
|
b = 3 * (c2 - c1) - c,
|
|
|
|
a = p2 - p1 - c - b;
|
|
|
|
return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max);
|
|
|
|
},
|
|
|
|
|
|
|
|
getParameterOf: function(v, x, y) {
|
|
|
|
// Handle beginnings and end separately, as they are not detected
|
|
|
|
// sometimes.
|
|
|
|
var tolerance = /*#=*/Numerical.TOLERANCE;
|
|
|
|
if (Math.abs(v[0] - x) < tolerance && Math.abs(v[1] - y) < tolerance)
|
|
|
|
return 0;
|
|
|
|
if (Math.abs(v[6] - x) < tolerance && Math.abs(v[7] - y) < tolerance)
|
|
|
|
return 1;
|
|
|
|
var txs = [],
|
|
|
|
tys = [],
|
2014-09-20 05:08:20 -04:00
|
|
|
sx = Curve.solveCubic(v, 0, x, txs, 0, 1),
|
|
|
|
sy = Curve.solveCubic(v, 1, y, tys, 0, 1),
|
2014-08-16 13:24:54 -04:00
|
|
|
tx, ty;
|
|
|
|
// sx, sy == -1 means infinite solutions:
|
|
|
|
// Loop through all solutions for x and match with solutions for y,
|
|
|
|
// to see if we either have a matching pair, or infinite solutions
|
|
|
|
// for one or the other.
|
|
|
|
for (var cx = 0; sx == -1 || cx < sx;) {
|
|
|
|
if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) {
|
|
|
|
for (var cy = 0; sy == -1 || cy < sy;) {
|
|
|
|
if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) {
|
|
|
|
// Handle infinite solutions by assigning root of
|
|
|
|
// the other polynomial
|
|
|
|
if (sx == -1) tx = ty;
|
|
|
|
else if (sy == -1) ty = tx;
|
|
|
|
// Use average if we're within tolerance
|
|
|
|
if (Math.abs(tx - ty) < tolerance)
|
|
|
|
return (tx + ty) * 0.5;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Avoid endless loops here: If sx is infinite and there was
|
|
|
|
// no fitting ty, there's no solution for this bezier
|
|
|
|
if (sx == -1)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return null;
|
|
|
|
},
|
|
|
|
|
|
|
|
// TODO: Find better name
|
|
|
|
getPart: function(v, from, to) {
|
|
|
|
if (from > 0)
|
|
|
|
v = Curve.subdivide(v, from)[1]; // [1] right
|
2014-09-20 05:09:09 -04:00
|
|
|
// Interpolate the parameter at 'to' in the new curve and cut there.
|
2014-08-16 13:24:54 -04:00
|
|
|
if (to < 1)
|
|
|
|
v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left
|
|
|
|
return v;
|
|
|
|
},
|
|
|
|
|
|
|
|
isLinear: function(v) {
|
|
|
|
var isZero = Numerical.isZero;
|
|
|
|
return isZero(v[0] - v[2]) && isZero(v[1] - v[3])
|
|
|
|
&& isZero(v[4] - v[6]) && isZero(v[5] - v[7]);
|
|
|
|
},
|
|
|
|
|
|
|
|
isFlatEnough: function(v, tolerance) {
|
|
|
|
// Thanks to Kaspar Fischer and Roger Willcocks for the following:
|
|
|
|
// http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7],
|
|
|
|
ux = 3 * c1x - 2 * p1x - p2x,
|
|
|
|
uy = 3 * c1y - 2 * p1y - p2y,
|
|
|
|
vx = 3 * c2x - 2 * p2x - p1x,
|
|
|
|
vy = 3 * c2y - 2 * p2y - p1y;
|
|
|
|
return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy)
|
|
|
|
< 10 * tolerance * tolerance;
|
|
|
|
},
|
|
|
|
|
|
|
|
getArea: function(v) {
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7];
|
|
|
|
// http://objectmix.com/graphics/133553-area-closed-bezier-curve.html
|
|
|
|
return ( 3.0 * c1y * p1x - 1.5 * c1y * c2x
|
|
|
|
- 1.5 * c1y * p2x - 3.0 * p1y * c1x
|
|
|
|
- 1.5 * p1y * c2x - 0.5 * p1y * p2x
|
|
|
|
+ 1.5 * c2y * p1x + 1.5 * c2y * c1x
|
|
|
|
- 3.0 * c2y * p2x + 0.5 * p2y * p1x
|
|
|
|
+ 1.5 * p2y * c1x + 3.0 * p2y * c2x) / 10;
|
|
|
|
},
|
|
|
|
|
|
|
|
getBounds: function(v) {
|
|
|
|
var min = v.slice(0, 2), // Start with values of point1
|
|
|
|
max = min.slice(), // clone
|
|
|
|
roots = [0, 0];
|
|
|
|
for (var i = 0; i < 2; i++)
|
|
|
|
Curve._addBounds(v[i], v[i + 2], v[i + 4], v[i + 6],
|
|
|
|
i, 0, min, max, roots);
|
|
|
|
return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Private helper for both Curve.getBounds() and Path.getBounds(), which
|
|
|
|
* finds the 0-crossings of the derivative of a bezier curve polynomial, to
|
|
|
|
* determine potential extremas when finding the bounds of a curve.
|
|
|
|
* Note: padding is only used for Path.getBounds().
|
|
|
|
*/
|
|
|
|
_addBounds: function(v0, v1, v2, v3, coord, padding, min, max, roots) {
|
|
|
|
// Code ported and further optimised from:
|
|
|
|
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
|
|
|
|
function add(value, padding) {
|
|
|
|
var left = value - padding,
|
|
|
|
right = value + padding;
|
|
|
|
if (left < min[coord])
|
|
|
|
min[coord] = left;
|
|
|
|
if (right > max[coord])
|
|
|
|
max[coord] = right;
|
|
|
|
}
|
|
|
|
// Calculate derivative of our bezier polynomial, divided by 3.
|
|
|
|
// Doing so allows for simpler calculations of a, b, c and leads to the
|
|
|
|
// same quadratic roots.
|
|
|
|
var a = 3 * (v1 - v2) - v0 + v3,
|
|
|
|
b = 2 * (v0 + v2) - 4 * v1,
|
|
|
|
c = v1 - v0,
|
|
|
|
count = Numerical.solveQuadratic(a, b, c, roots),
|
|
|
|
// Add some tolerance for good roots, as t = 0 / 1 are added
|
|
|
|
// separately anyhow, and we don't want joins to be added with
|
|
|
|
// radiuses in getStrokeBounds()
|
|
|
|
tMin = /*#=*/Numerical.TOLERANCE,
|
|
|
|
tMax = 1 - tMin;
|
|
|
|
// Only add strokeWidth to bounds for points which lie within 0 < t < 1
|
|
|
|
// The corner cases for cap and join are handled in getStrokeBounds()
|
|
|
|
add(v3, 0);
|
|
|
|
for (var i = 0; i < count; i++) {
|
|
|
|
var t = roots[i],
|
|
|
|
u = 1 - t;
|
|
|
|
// Test for good roots and only add to bounds if good.
|
|
|
|
if (tMin < t && t < tMax)
|
|
|
|
// Calculate bezier polynomial at t.
|
|
|
|
add(u * u * u * v0
|
|
|
|
+ 3 * u * u * t * v1
|
|
|
|
+ 3 * u * t * t * v2
|
|
|
|
+ t * t * t * v3,
|
|
|
|
padding);
|
|
|
|
}
|
|
|
|
}
|
2013-01-28 19:32:04 -05:00
|
|
|
}}, Base.each(['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'],
|
2014-08-16 13:24:54 -04:00
|
|
|
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
|
|
|
|
// determine the bounds of Curve objects with defined segment1 and segment2
|
|
|
|
// values Curve.getBounds() can be used directly on curve arrays, without
|
|
|
|
// the need to create a Curve object first, as required by the code that
|
|
|
|
// finds path interesections.
|
|
|
|
function(name) {
|
|
|
|
this[name] = function() {
|
|
|
|
if (!this._bounds)
|
|
|
|
this._bounds = {};
|
|
|
|
var bounds = this._bounds[name];
|
|
|
|
if (!bounds) {
|
|
|
|
// Calculate the curve bounds by passing a segment list for the
|
|
|
|
// curve to the static Path.get*Boudns methods.
|
|
|
|
bounds = this._bounds[name] = Path[name]([this._segment1,
|
|
|
|
this._segment2], false, this._path.getStyle());
|
|
|
|
}
|
|
|
|
return bounds.clone();
|
|
|
|
};
|
|
|
|
},
|
2013-01-28 19:32:04 -05:00
|
|
|
/** @lends Curve# */{
|
2014-08-16 13:24:54 -04:00
|
|
|
/**
|
|
|
|
* The bounding rectangle of the curve excluding stroke width.
|
|
|
|
*
|
2014-08-26 04:01:30 -04:00
|
|
|
* @name Curve#bounds
|
2014-08-16 13:24:54 -04:00
|
|
|
* @type Rectangle
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The bounding rectangle of the curve including stroke width.
|
|
|
|
*
|
2014-08-26 04:01:30 -04:00
|
|
|
* @name Curve#strokeBounds
|
2014-08-16 13:24:54 -04:00
|
|
|
* @type Rectangle
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The bounding rectangle of the curve including handles.
|
|
|
|
*
|
2014-08-26 04:01:30 -04:00
|
|
|
* @name Curve#handleBounds
|
2014-08-16 13:24:54 -04:00
|
|
|
* @type Rectangle
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The rough bounding rectangle of the curve that is shure to include all of
|
|
|
|
* the drawing, including stroke width.
|
|
|
|
*
|
2014-08-26 04:01:30 -04:00
|
|
|
* @name Curve#roughBounds
|
2014-08-16 13:24:54 -04:00
|
|
|
* @type Rectangle
|
|
|
|
* @ignore
|
|
|
|
*/
|
2013-06-27 20:13:00 -04:00
|
|
|
}), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'],
|
2014-08-16 13:24:54 -04:00
|
|
|
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
|
|
|
|
// determine the bounds of Curve objects with defined segment1 and segment2
|
|
|
|
// values Curve.getBounds() can be used directly on curve arrays, without
|
|
|
|
// the need to create a Curve object first, as required by the code that
|
|
|
|
// finds path interesections.
|
|
|
|
function(name, index) {
|
|
|
|
this[name + 'At'] = function(offset, isParameter) {
|
|
|
|
var values = this.getValues();
|
|
|
|
return Curve.evaluate(values, isParameter
|
|
|
|
? offset : Curve.getParameterAt(values, offset, 0), index);
|
|
|
|
};
|
|
|
|
// Deprecated and undocumented, but keep around for now.
|
|
|
|
// TODO: Remove once enough time has passed (28.01.2013)
|
|
|
|
this[name] = function(parameter) {
|
|
|
|
return Curve.evaluate(this.getValues(), parameter, index);
|
|
|
|
};
|
|
|
|
},
|
2013-01-28 19:30:28 -05:00
|
|
|
/** @lends Curve# */{
|
2014-08-16 13:24:54 -04:00
|
|
|
// Explicitly deactivate the creation of beans, as we have functions here
|
|
|
|
// that look like bean getters but actually read arguments.
|
|
|
|
// See #getParameterOf(), #getLocationOf(), #getNearestLocation(), ...
|
|
|
|
beans: false,
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the curve time parameter of the specified offset on the path,
|
|
|
|
* relative to the provided start parameter. If offset is a negative value,
|
|
|
|
* the parameter is searched to the left of the start parameter. If no start
|
|
|
|
* parameter is provided, a default of {@code 0} for positive values of
|
|
|
|
* {@code offset} and {@code 1} for negative values of {@code offset}.
|
|
|
|
* @param {Number} offset
|
|
|
|
* @param {Number} [start]
|
|
|
|
* @return {Number} the curve time parameter at the specified offset.
|
|
|
|
*/
|
|
|
|
getParameterAt: function(offset, start) {
|
2014-09-28 05:44:38 -04:00
|
|
|
return Curve.getParameterAt(this.getValues(), offset, start);
|
2014-08-16 13:24:54 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the curve time parameter of the specified point if it lies on the
|
|
|
|
* curve, {@code null} otherwise.
|
|
|
|
* @param {Point} point the point on the curve.
|
|
|
|
* @return {Number} the curve time parameter of the specified point.
|
|
|
|
*/
|
|
|
|
getParameterOf: function(/* point */) {
|
|
|
|
var point = Point.read(arguments);
|
|
|
|
return Curve.getParameterOf(this.getValues(), point.x, point.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the curve location at the specified offset or curve time
|
|
|
|
* parameter.
|
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {CurveLocation} the curve location at the specified the offset.
|
|
|
|
*/
|
|
|
|
getLocationAt: function(offset, isParameter) {
|
|
|
|
if (!isParameter)
|
|
|
|
offset = this.getParameterAt(offset);
|
2014-09-20 05:09:09 -04:00
|
|
|
return offset >= 0 && offset <= 1 && new CurveLocation(this, offset);
|
2014-08-16 13:24:54 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the curve location of the specified point if it lies on the
|
|
|
|
* curve, {@code null} otherwise.
|
|
|
|
* @param {Point} point the point on the curve.
|
|
|
|
* @return {CurveLocation} the curve location of the specified point.
|
|
|
|
*/
|
|
|
|
getLocationOf: function(/* point */) {
|
2014-09-20 05:09:09 -04:00
|
|
|
return this.getLocationAt(this.getParameterOf(Point.read(arguments)),
|
|
|
|
true);
|
2014-08-16 13:24:54 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the length of the path from its beginning up to up to the
|
|
|
|
* specified point if it lies on the path, {@code null} otherwise.
|
|
|
|
* @param {Point} point the point on the path.
|
|
|
|
* @return {Number} the length of the path up to the specified point.
|
|
|
|
*/
|
|
|
|
getOffsetOf: function(/* point */) {
|
|
|
|
var loc = this.getLocationOf.apply(this, arguments);
|
|
|
|
return loc ? loc.getOffset() : null;
|
|
|
|
},
|
|
|
|
|
|
|
|
getNearestLocation: function(/* point */) {
|
|
|
|
var point = Point.read(arguments),
|
|
|
|
values = this.getValues(),
|
|
|
|
count = 100,
|
|
|
|
minDist = Infinity,
|
|
|
|
minT = 0;
|
|
|
|
|
|
|
|
function refine(t) {
|
|
|
|
if (t >= 0 && t <= 1) {
|
|
|
|
var dist = point.getDistance(
|
|
|
|
Curve.evaluate(values, t, 0), true);
|
|
|
|
if (dist < minDist) {
|
|
|
|
minDist = dist;
|
|
|
|
minT = t;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (var i = 0; i <= count; i++)
|
|
|
|
refine(i / count);
|
|
|
|
|
|
|
|
// Now iteratively refine solution until we reach desired precision.
|
|
|
|
var step = 1 / (count * 2);
|
|
|
|
while (step > /*#=*/Numerical.TOLERANCE) {
|
|
|
|
if (!refine(minT - step) && !refine(minT + step))
|
|
|
|
step /= 2;
|
|
|
|
}
|
|
|
|
var pt = Curve.evaluate(values, minT, 0);
|
|
|
|
return new CurveLocation(this, minT, pt, null, null, null,
|
|
|
|
point.getDistance(pt));
|
|
|
|
},
|
|
|
|
|
|
|
|
getNearestPoint: function(/* point */) {
|
|
|
|
return this.getNearestLocation.apply(this, arguments).getPoint();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2014-10-14 07:52:57 -04:00
|
|
|
* Calculates the point on the curve at the given offset.
|
2014-08-16 13:24:54 -04:00
|
|
|
*
|
|
|
|
* @name Curve#getPointAt
|
|
|
|
* @function
|
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Point} the point on the curve at the specified offset.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
2014-10-14 07:52:57 -04:00
|
|
|
* Calculates the tangent vector of the curve at the given offset.
|
2014-08-16 13:24:54 -04:00
|
|
|
*
|
|
|
|
* @name Curve#getTangentAt
|
|
|
|
* @function
|
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Point} the tangent of the curve at the specified offset.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
2014-10-14 07:52:57 -04:00
|
|
|
* Calculates the normal vector of the curve at the given offset.
|
2014-08-16 13:24:54 -04:00
|
|
|
*
|
|
|
|
* @name Curve#getNormalAt
|
|
|
|
* @function
|
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
|
|
|
* @return {Point} the normal of the curve at the specified offset.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
2014-10-14 07:52:57 -04:00
|
|
|
* Calculates the curvature of the curve at the given offset. Curvatures
|
|
|
|
* indicate how sharply a curve changes direction. A straight line has zero
|
|
|
|
* curvature, where as a circle has a constant curvature. The curve's radius
|
|
|
|
* at the given offset is the reciprocal value of its curvature.
|
2014-08-16 13:24:54 -04:00
|
|
|
*
|
|
|
|
* @name Curve#getCurvatureAt
|
|
|
|
* @function
|
|
|
|
* @param {Number} offset the offset on the curve, or the curve time
|
|
|
|
* parameter if {@code isParameter} is {@code true}
|
|
|
|
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
|
|
|
|
* is a curve time parameter.
|
2014-10-15 06:02:21 -04:00
|
|
|
* @return {Number} the curvature of the curve at the specified offset.
|
2014-08-16 13:24:54 -04:00
|
|
|
*/
|
2013-05-06 02:14:49 -04:00
|
|
|
}),
|
|
|
|
new function() { // Scope for methods that require numerical integration
|
|
|
|
|
2014-08-16 13:24:54 -04:00
|
|
|
function getLengthIntegrand(v) {
|
|
|
|
// Calculate the coefficients of a Bezier derivative.
|
|
|
|
var p1x = v[0], p1y = v[1],
|
|
|
|
c1x = v[2], c1y = v[3],
|
|
|
|
c2x = v[4], c2y = v[5],
|
|
|
|
p2x = v[6], p2y = v[7],
|
|
|
|
|
|
|
|
ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
|
|
|
|
bx = 6 * (p1x + c2x) - 12 * c1x,
|
|
|
|
cx = 3 * (c1x - p1x),
|
|
|
|
|
|
|
|
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
|
|
|
|
by = 6 * (p1y + c2y) - 12 * c1y,
|
|
|
|
cy = 3 * (c1y - p1y);
|
|
|
|
|
|
|
|
return function(t) {
|
|
|
|
// Calculate quadratic equations of derivatives for x and y
|
|
|
|
var dx = (ax * t + bx) * t + cx,
|
|
|
|
dy = (ay * t + by) * t + cy;
|
|
|
|
return Math.sqrt(dx * dx + dy * dy);
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
// Amount of integral evaluations for the interval 0 <= a < b <= 1
|
|
|
|
function getIterations(a, b) {
|
|
|
|
// Guess required precision based and size of range...
|
|
|
|
// TODO: There should be much better educated guesses for
|
|
|
|
// this. Also, what does this depend on? Required precision?
|
|
|
|
return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32)));
|
|
|
|
}
|
|
|
|
|
|
|
|
return {
|
|
|
|
statics: true,
|
|
|
|
|
|
|
|
getLength: function(v, a, b) {
|
|
|
|
if (a === undefined)
|
|
|
|
a = 0;
|
|
|
|
if (b === undefined)
|
|
|
|
b = 1;
|
|
|
|
var isZero = Numerical.isZero;
|
|
|
|
// See if the curve is linear by checking p1 == c1 and p2 == c2
|
|
|
|
if (a === 0 && b === 1
|
|
|
|
&& isZero(v[0] - v[2]) && isZero(v[1] - v[3])
|
|
|
|
&& isZero(v[6] - v[4]) && isZero(v[7] - v[5])) {
|
|
|
|
// Straight line
|
|
|
|
var dx = v[6] - v[0], // p2x - p1x
|
|
|
|
dy = v[7] - v[1]; // p2y - p1y
|
|
|
|
return Math.sqrt(dx * dx + dy * dy);
|
|
|
|
}
|
|
|
|
var ds = getLengthIntegrand(v);
|
|
|
|
return Numerical.integrate(ds, a, b, getIterations(a, b));
|
|
|
|
},
|
|
|
|
|
|
|
|
getParameterAt: function(v, offset, start) {
|
2014-09-28 05:44:38 -04:00
|
|
|
if (start === undefined)
|
|
|
|
start = offset < 0 ? 1 : 0
|
2014-08-16 13:24:54 -04:00
|
|
|
if (offset === 0)
|
|
|
|
return start;
|
|
|
|
// See if we're going forward or backward, and handle cases
|
|
|
|
// differently
|
|
|
|
var forward = offset > 0,
|
|
|
|
a = forward ? start : 0,
|
|
|
|
b = forward ? 1 : start,
|
|
|
|
// Use integrand to calculate both range length and part
|
|
|
|
// lengths in f(t) below.
|
|
|
|
ds = getLengthIntegrand(v),
|
|
|
|
// Get length of total range
|
|
|
|
rangeLength = Numerical.integrate(ds, a, b,
|
|
|
|
getIterations(a, b));
|
2014-09-28 05:44:38 -04:00
|
|
|
if (Math.abs(offset) >= rangeLength)
|
2014-08-16 13:24:54 -04:00
|
|
|
return forward ? b : a;
|
|
|
|
// Use offset / rangeLength for an initial guess for t, to
|
|
|
|
// bring us closer:
|
|
|
|
var guess = offset / rangeLength,
|
|
|
|
length = 0;
|
|
|
|
// Iteratively calculate curve range lengths, and add them up,
|
|
|
|
// using integration precision depending on the size of the
|
|
|
|
// range. This is much faster and also more precise than not
|
|
|
|
// modifying start and calculating total length each time.
|
|
|
|
function f(t) {
|
2014-09-28 05:44:38 -04:00
|
|
|
// When start > t, the integration returns a negative value.
|
|
|
|
length += Numerical.integrate(ds, start, t,
|
|
|
|
getIterations(start, t));
|
2014-08-16 13:24:54 -04:00
|
|
|
start = t;
|
|
|
|
return length - offset;
|
|
|
|
}
|
2014-09-28 05:49:46 -04:00
|
|
|
// Start with out initial guess for x.
|
|
|
|
// NOTE: guess is a negative value when not looking forward.
|
|
|
|
return Numerical.findRoot(f, ds, start + guess, a, b, 16,
|
|
|
|
/*#=*/Numerical.TOLERANCE);
|
2014-08-16 13:24:54 -04:00
|
|
|
}
|
|
|
|
};
|
2013-05-26 20:59:01 -04:00
|
|
|
}, new function() { // Scope for intersection using bezier fat-line clipping
|
2014-08-16 13:24:54 -04:00
|
|
|
function addLocation(locations, include, curve1, t1, point1, curve2, t2,
|
|
|
|
point2) {
|
|
|
|
var loc = new CurveLocation(curve1, t1, point1, curve2, t2, point2);
|
|
|
|
if (!include || include(loc))
|
|
|
|
locations.push(loc);
|
|
|
|
}
|
|
|
|
|
|
|
|
function addCurveIntersections(v1, v2, curve1, curve2, locations, include,
|
|
|
|
tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion) {
|
2014-02-24 15:54:47 -05:00
|
|
|
/*#*/ if (__options.fatlineClipping) {
|
2014-08-16 13:24:54 -04:00
|
|
|
// Avoid deeper recursion.
|
2015-01-02 10:33:15 -05:00
|
|
|
// NOTE: @iconexperience determined that more than 20 recursions are
|
|
|
|
// needed sometimes, depending on the tDiff threshold values further
|
|
|
|
// below when determining which curve converges the least. He also
|
|
|
|
// recommended a threshold of 0.5 instead of the initial 0.8
|
|
|
|
// See: https://github.com/paperjs/paper.js/issues/565
|
2015-01-02 10:29:12 -05:00
|
|
|
if (recursion > 32)
|
2014-08-16 13:24:54 -04:00
|
|
|
return;
|
|
|
|
// Let P be the first curve and Q be the second
|
|
|
|
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7],
|
|
|
|
tolerance = /*#=*/Numerical.TOLERANCE,
|
|
|
|
hullEpsilon = 1e-9,
|
|
|
|
// Calculate the fat-line L for Q is the baseline l and two
|
|
|
|
// offsets which completely encloses the curve P.
|
|
|
|
d1 = getSignedDistance(q0x, q0y, q3x, q3y, v2[2], v2[3]) || 0,
|
|
|
|
d2 = getSignedDistance(q0x, q0y, q3x, q3y, v2[4], v2[5]) || 0,
|
|
|
|
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
|
|
|
|
dMin = factor * Math.min(0, d1, d2),
|
|
|
|
dMax = factor * Math.max(0, d1, d2),
|
|
|
|
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
|
|
|
|
// distance of P from the baseline l of the fat-line, ti is equally
|
|
|
|
// spaced in [0, 1]
|
|
|
|
dp0 = getSignedDistance(q0x, q0y, q3x, q3y, v1[0], v1[1]),
|
|
|
|
dp1 = getSignedDistance(q0x, q0y, q3x, q3y, v1[2], v1[3]),
|
|
|
|
dp2 = getSignedDistance(q0x, q0y, q3x, q3y, v1[4], v1[5]),
|
|
|
|
dp3 = getSignedDistance(q0x, q0y, q3x, q3y, v1[6], v1[7]),
|
|
|
|
tMinNew, tMaxNew, tDiff;
|
|
|
|
if (q0x === q3x && uMax - uMin <= hullEpsilon && recursion > 3) {
|
|
|
|
// The fatline of Q has converged to a point, the clipping is not
|
|
|
|
// reliable. Return the value we have even though we will miss the
|
|
|
|
// precision.
|
|
|
|
tMinNew = (tMax + tMin) / 2;
|
|
|
|
tMaxNew = tMinNew;
|
|
|
|
tDiff = 0;
|
|
|
|
} else {
|
|
|
|
// Get the top and bottom parts of the convex-hull
|
|
|
|
var hull = getConvexHull(dp0, dp1, dp2, dp3),
|
|
|
|
top = hull[0],
|
|
|
|
bottom = hull[1],
|
|
|
|
tMinClip, tMaxClip;
|
|
|
|
// Clip the convex-hull with dMin and dMax
|
|
|
|
tMinClip = clipConvexHull(top, bottom, dMin, dMax);
|
|
|
|
top.reverse();
|
|
|
|
bottom.reverse();
|
|
|
|
tMaxClip = clipConvexHull(top, bottom, dMin, dMax);
|
|
|
|
// No intersections if one of the tvalues are null or 'undefined'
|
|
|
|
if (tMinClip == null || tMaxClip == null)
|
|
|
|
return false;
|
|
|
|
// Clip P with the fatline for Q
|
|
|
|
v1 = Curve.getPart(v1, tMinClip, tMaxClip);
|
|
|
|
tDiff = tMaxClip - tMinClip;
|
|
|
|
// tMin and tMax are within the range (0, 1). We need to project it
|
|
|
|
// to the original parameter range for v2.
|
|
|
|
tMinNew = tMax * tMinClip + tMin * (1 - tMinClip);
|
|
|
|
tMaxNew = tMax * tMaxClip + tMin * (1 - tMaxClip);
|
|
|
|
}
|
|
|
|
// Check if we need to subdivide the curves
|
2015-01-02 10:29:12 -05:00
|
|
|
if (oldTDiff > 0.5 && tDiff > 0.5) {
|
2014-08-16 13:24:54 -04:00
|
|
|
// Subdivide the curve which has converged the least.
|
|
|
|
if (tMaxNew - tMinNew > uMax - uMin) {
|
|
|
|
var parts = Curve.subdivide(v1, 0.5),
|
|
|
|
t = tMinNew + (tMaxNew - tMinNew) / 2;
|
|
|
|
addCurveIntersections(
|
|
|
|
v2, parts[0], curve2, curve1, locations, include,
|
|
|
|
uMin, uMax, tMinNew, t, tDiff, !reverse, ++recursion);
|
|
|
|
addCurveIntersections(
|
|
|
|
v2, parts[1], curve2, curve1, locations, include,
|
|
|
|
uMin, uMax, t, tMaxNew, tDiff, !reverse, recursion);
|
|
|
|
} else {
|
|
|
|
var parts = Curve.subdivide(v2, 0.5),
|
|
|
|
t = uMin + (uMax - uMin) / 2;
|
|
|
|
addCurveIntersections(
|
|
|
|
parts[0], v1, curve2, curve1, locations, include,
|
|
|
|
uMin, t, tMinNew, tMaxNew, tDiff, !reverse, ++recursion);
|
|
|
|
addCurveIntersections(
|
|
|
|
parts[1], v1, curve2, curve1, locations, include,
|
|
|
|
t, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
|
|
|
|
}
|
|
|
|
} else if (Math.max(uMax - uMin, tMaxNew - tMinNew) < tolerance) {
|
|
|
|
// We have isolated the intersection with sufficient precision
|
|
|
|
var t1 = tMinNew + (tMaxNew - tMinNew) / 2,
|
|
|
|
t2 = uMin + (uMax - uMin) / 2;
|
|
|
|
if (reverse) {
|
|
|
|
addLocation(locations, include,
|
|
|
|
curve2, t2, Curve.evaluate(v2, t2, 0),
|
|
|
|
curve1, t1, Curve.evaluate(v1, t1, 0));
|
|
|
|
} else {
|
|
|
|
addLocation(locations, include,
|
|
|
|
curve1, t1, Curve.evaluate(v1, t1, 0),
|
|
|
|
curve2, t2, Curve.evaluate(v2, t2, 0));
|
|
|
|
}
|
|
|
|
} else { // Iterate
|
|
|
|
addCurveIntersections(v2, v1, curve2, curve1, locations, include,
|
|
|
|
uMin, uMax, tMinNew, tMaxNew, tDiff, !reverse, ++recursion);
|
|
|
|
}
|
2014-02-24 15:54:47 -05:00
|
|
|
/*#*/ } else { // !__options.fatlineClipping
|
2014-08-16 13:24:54 -04:00
|
|
|
// Subdivision method
|
|
|
|
var bounds1 = Curve.getBounds(v1),
|
|
|
|
bounds2 = Curve.getBounds(v2),
|
|
|
|
tolerance = /*#=*/Numerical.TOLERANCE;
|
|
|
|
if (bounds1.touches(bounds2)) {
|
|
|
|
// See if both curves are flat enough to be treated as lines, either
|
|
|
|
// because they have no control points at all, or are "flat enough"
|
|
|
|
// If the curve was flat in a previous iteration, we don't need to
|
|
|
|
// recalculate since it does not need further subdivision then.
|
|
|
|
if ((Curve.isLinear(v1) || Curve.isFlatEnough(v1, tolerance))
|
|
|
|
&& (Curve.isLinear(v2) || Curve.isFlatEnough(v2, tolerance))) {
|
|
|
|
// See if the parametric equations of the lines interesct.
|
|
|
|
addLineIntersection(v1, v2, curve1, curve2, locations, include);
|
|
|
|
} else {
|
|
|
|
// Subdivide both curves, and see if they intersect.
|
|
|
|
// If one of the curves is flat already, no further subdivion
|
|
|
|
// is required.
|
|
|
|
var v1s = Curve.subdivide(v1),
|
|
|
|
v2s = Curve.subdivide(v2);
|
|
|
|
for (var i = 0; i < 2; i++)
|
|
|
|
for (var j = 0; j < 2; j++)
|
|
|
|
addCurveIntersections(v1s[i], v2s[j], curve1, curve2,
|
|
|
|
locations, include);
|
|
|
|
}
|
|
|
|
}
|
2014-02-24 15:54:47 -05:00
|
|
|
/*#*/ } // !__options.fatlineClipping
|
2014-08-16 13:24:54 -04:00
|
|
|
}
|
2013-12-08 17:14:13 -05:00
|
|
|
|
2014-02-24 15:54:47 -05:00
|
|
|
/*#*/ if (__options.fatlineClipping) {
|
2015-01-02 10:17:19 -05:00
|
|
|
function getSignedDistance(l1x, l1y, l2x, l2y, x, y) {
|
|
|
|
var vx = l2x - l1x,
|
|
|
|
vy = l2y - l1y;
|
|
|
|
if (Numerical.isZero(vx))
|
|
|
|
return vy >= 0 ? l1y - x : x - l1x;
|
|
|
|
var m = vy / vx, // slope
|
|
|
|
b = l1y - m * l1x; // y offset
|
|
|
|
// Distance to the linear equation
|
|
|
|
return (y - (m * x) - b) / Math.sqrt(m * m + 1);
|
|
|
|
}
|
|
|
|
|
2014-08-16 13:24:54 -04:00
|
|
|
/**
|
|
|
|
* Calculate the convex hull for the non-parametric bezier curve D(ti, di(t))
|
|
|
|
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
|
|
|
|
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
|
|
|
|
* curve are already sorted in the X axis in the increasing order.
|
|
|
|
* Calculating convex-hull is much easier than a set of arbitrary points.
|
|
|
|
*
|
|
|
|
* The convex-hull is returned as two parts [TOP, BOTTOM]:
|
|
|
|
* (both are in a coordinate space where y increases upwards with origin at
|
|
|
|
* bottom-left)
|
|
|
|
* TOP: The part that lies above the 'median' (line connecting end points of
|
|
|
|
* the curve)
|
|
|
|
* BOTTOM: The part that lies below the median.
|
|
|
|
*/
|
|
|
|
function getConvexHull(dq0, dq1, dq2, dq3) {
|
|
|
|
var p0 = [ 0, dq0 ],
|
|
|
|
p1 = [ 1 / 3, dq1 ],
|
|
|
|
p2 = [ 2 / 3, dq2 ],
|
|
|
|
p3 = [ 1, dq3 ],
|
|
|
|
// Find signed distance of p1 and p2 from line [ p0, p3 ]
|
|
|
|
dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
|
|
|
|
dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2),
|
|
|
|
flip = false,
|
|
|
|
hull;
|
|
|
|
// Check if p1 and p2 are on the same side of the line [ p0, p3 ]
|
|
|
|
if (dist1 * dist2 < 0) {
|
|
|
|
// p1 and p2 lie on different sides of [ p0, p3 ]. The hull is a
|
|
|
|
// quadrilateral and line [ p0, p3 ] is NOT part of the hull so we
|
|
|
|
// are pretty much done here.
|
|
|
|
// The top part includes p1,
|
|
|
|
// we will reverse it later if that is not the case
|
|
|
|
hull = [[p0, p1, p3], [p0, p2, p3]];
|
|
|
|
flip = dist1 < 0;
|
|
|
|
} else {
|
|
|
|
// p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be
|
|
|
|
// a triangle or a quadrilateral and line [ p0, p3 ] is part of the
|
|
|
|
// hull. Check if the hull is a triangle or a quadrilateral.
|
|
|
|
// Also, if at least one of the distances for p1 or p2, from line
|
|
|
|
// [p0, p3] is zero then hull must at most have 3 vertices.
|
|
|
|
var pmax, cross = 0,
|
|
|
|
distZero = dist1 === 0 || dist2 === 0;
|
|
|
|
if (Math.abs(dist1) > Math.abs(dist2)) {
|
|
|
|
pmax = p1;
|
|
|
|
// apex is dq3 and the other apex point is dq0 vector dqapex ->
|
|
|
|
// dqapex2 or base vector which is already part of the hull.
|
|
|
|
cross = (dq3 - dq2 - (dq3 - dq0) / 3)
|
|
|
|
* (2 * (dq3 - dq2) - dq3 + dq1) / 3;
|
|
|
|
} else {
|
|
|
|
pmax = p2;
|
|
|
|
// apex is dq0 in this case, and the other apex point is dq3
|
|
|
|
// vector dqapex -> dqapex2 or base vector which is already part
|
|
|
|
// of the hull.
|
|
|
|
cross = (dq1 - dq0 + (dq0 - dq3) / 3)
|
|
|
|
* (-2 * (dq0 - dq1) + dq0 - dq2) / 3;
|
|
|
|
}
|
|
|
|
// Compare cross products of these vectors to determine if the point
|
|
|
|
// is in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral.
|
|
|
|
hull = cross < 0 || distZero
|
|
|
|
// p2 is inside the triangle, hull is a triangle.
|
|
|
|
? [[p0, pmax, p3], [p0, p3]]
|
|
|
|
// Convex hull is a quadrilateral and we need all lines in
|
|
|
|
// correct order where line [ p0, p3 ] is part of the hull.
|
|
|
|
: [[p0, p1, p2, p3], [p0, p3]];
|
|
|
|
flip = dist1 ? dist1 < 0 : dist2 < 0;
|
|
|
|
}
|
|
|
|
return flip ? hull.reverse() : hull;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Clips the convex-hull and returns [tMin, tMax] for the curve contained
|
|
|
|
*/
|
|
|
|
function clipConvexHull(hullTop, hullBottom, dMin, dMax) {
|
|
|
|
var tProxy,
|
|
|
|
tVal = null,
|
|
|
|
px, py,
|
|
|
|
qx, qy;
|
|
|
|
for (var i = 0, l = hullBottom.length - 1; i < l; i++) {
|
|
|
|
py = hullBottom[i][1];
|
|
|
|
qy = hullBottom[i + 1][1];
|
|
|
|
if (py < qy) {
|
|
|
|
tProxy = null;
|
|
|
|
} else if (qy <= dMax) {
|
|
|
|
px = hullBottom[i][0];
|
|
|
|
qx = hullBottom[i + 1][0];
|
2014-08-25 06:49:14 -04:00
|
|
|
tProxy = px + (dMax - py) * (qx - px) / (qy - py);
|
2014-08-16 13:24:54 -04:00
|
|
|
} else {
|
|
|
|
// Try the next chain
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// We got a proxy-t;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (hullTop[0][1] <= dMax)
|
|
|
|
tProxy = hullTop[0][0];
|
|
|
|
for (var i = 0, l = hullTop.length - 1; i < l; i++) {
|
|
|
|
py = hullTop[i][1];
|
|
|
|
qy = hullTop[i + 1][1];
|
|
|
|
if (py >= dMin) {
|
|
|
|
tVal = tProxy;
|
|
|
|
} else if (py > qy) {
|
|
|
|
tVal = null;
|
|
|
|
} else if (qy >= dMin) {
|
|
|
|
px = hullTop[i][0];
|
|
|
|
qx = hullTop[i + 1][0];
|
|
|
|
tVal = px + (dMin - py) * (qx - px) / (qy - py);
|
|
|
|
} else {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return tVal;
|
|
|
|
}
|
2014-02-24 15:54:47 -05:00
|
|
|
/*#*/ } // __options.fatlineClipping
|
2013-05-25 01:30:13 -04:00
|
|
|
|
2014-08-16 13:24:54 -04:00
|
|
|
/**
|
|
|
|
* Intersections between curve and line becomes rather simple here mostly
|
|
|
|
* because of Numerical class. We can rotate the curve and line so that the
|
|
|
|
* line is on the X axis, and solve the implicit equations for the X axis
|
|
|
|
* and the curve.
|
|
|
|
*/
|
|
|
|
function addCurveLineIntersections(v1, v2, curve1, curve2, locations,
|
|
|
|
include) {
|
|
|
|
var flip = Curve.isLinear(v1),
|
|
|
|
vc = flip ? v2 : v1,
|
|
|
|
vl = flip ? v1 : v2,
|
|
|
|
lx1 = vl[0], ly1 = vl[1],
|
|
|
|
lx2 = vl[6], ly2 = vl[7],
|
|
|
|
// Rotate both curve and line around l1 so that line is on x axis.
|
|
|
|
ldx = lx2 - lx1,
|
|
|
|
ldy = ly2 - ly1,
|
|
|
|
// Calculate angle to the x-axis (1, 0).
|
|
|
|
angle = Math.atan2(-ldy, ldx),
|
|
|
|
sin = Math.sin(angle),
|
|
|
|
cos = Math.cos(angle),
|
|
|
|
// (rlx1, rly1) = (0, 0)
|
|
|
|
rlx2 = ldx * cos - ldy * sin,
|
|
|
|
// The curve values for the rotated line.
|
|
|
|
rvl = [0, 0, 0, 0, rlx2, 0, rlx2, 0],
|
|
|
|
// Calculate the curve values of the rotated curve.
|
|
|
|
rvc = [];
|
|
|
|
for(var i = 0; i < 8; i += 2) {
|
|
|
|
var x = vc[i] - lx1,
|
|
|
|
y = vc[i + 1] - ly1;
|
|
|
|
rvc.push(
|
|
|
|
x * cos - y * sin,
|
|
|
|
y * cos + x * sin);
|
|
|
|
}
|
|
|
|
var roots = [],
|
|
|
|
count = Curve.solveCubic(rvc, 1, 0, roots, 0, 1);
|
|
|
|
// NOTE: count could be -1 for infinite solutions, but that should only
|
|
|
|
// happen with lines, in which case we should not be here.
|
|
|
|
for (var i = 0; i < count; i++) {
|
|
|
|
var tc = roots[i],
|
|
|
|
x = Curve.evaluate(rvc, tc, 0).x;
|
|
|
|
// We do have a point on the infinite line. Check if it falls on
|
|
|
|
// the line *segment*.
|
|
|
|
if (x >= 0 && x <= rlx2) {
|
|
|
|
// Find the parameter of the intersection on the rotated line.
|
|
|
|
var tl = Curve.getParameterOf(rvl, x, 0),
|
|
|
|
t1 = flip ? tl : tc,
|
|
|
|
t2 = flip ? tc : tl;
|
|
|
|
addLocation(locations, include,
|
|
|
|
curve1, t1, Curve.evaluate(v1, t1, 0),
|
|
|
|
curve2, t2, Curve.evaluate(v2, t2, 0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
function addLineIntersection(v1, v2, curve1, curve2, locations, include) {
|
|
|
|
var point = Line.intersect(
|
|
|
|
v1[0], v1[1], v1[6], v1[7],
|
|
|
|
v2[0], v2[1], v2[6], v2[7]);
|
|
|
|
if (point) {
|
|
|
|
// We need to return the parameters for the intersection,
|
|
|
|
// since they will be used for sorting
|
|
|
|
var x = point.x,
|
|
|
|
y = point.y;
|
|
|
|
addLocation(locations, include,
|
|
|
|
curve1, Curve.getParameterOf(v1, x, y), point,
|
|
|
|
curve2, Curve.getParameterOf(v2, x, y), point);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return { statics: /** @lends Curve */{
|
|
|
|
// We need to provide the original left curve reference to the
|
|
|
|
// #getIntersections() calls as it is required to create the resulting
|
|
|
|
// CurveLocation objects.
|
|
|
|
getIntersections: function(v1, v2, curve1, curve2, locations, include) {
|
|
|
|
var linear1 = Curve.isLinear(v1),
|
|
|
|
linear2 = Curve.isLinear(v2);
|
|
|
|
(linear1 && linear2
|
|
|
|
? addLineIntersection
|
|
|
|
: linear1 || linear2
|
|
|
|
? addCurveLineIntersections
|
|
|
|
: addCurveIntersections)(
|
|
|
|
v1, v2, curve1, curve2, locations, include,
|
|
|
|
// Define the defaults for these parameters of
|
|
|
|
// addCurveIntersections():
|
|
|
|
// tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion
|
|
|
|
0, 1, 0, 1, 0, false, 0);
|
|
|
|
return locations;
|
|
|
|
}
|
|
|
|
}};
|
2013-05-06 02:14:49 -04:00
|
|
|
});
|