paper.js/src/path/PathItem.Boolean.js

263 lines
9 KiB
JavaScript
Raw Normal View History

/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
2014-01-03 19:47:16 -05:00
* Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey
* http://scratchdisk.com/ & http://jonathanpuckey.com/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
/*
2013-05-03 19:31:36 -04:00
* Boolean Geometric Path Operations
*
* This is mostly written for clarity and compatibility, not optimised for
* performance, and has to be tested heavily for stability.
*
* Supported
2013-05-05 19:38:18 -04:00
* - Path and CompoundPath items
* - Boolean Union
* - Boolean Intersection
* - Boolean Subtraction
* - Resolving a self-intersecting Path
*
* Not supported yet
* - Boolean operations on self-intersecting Paths
* - Paths are clones of each other that ovelap exactly on top of each other!
*
* @author Harikrishnan Gopalakrishnan
* http://hkrish.com/playground/paperjs/booleanStudy.html
*/
PathItem.inject(new function() {
2014-01-05 09:59:21 -05:00
/**
* To deal with a HTML5 canvas requirement where CompoundPaths' child
* contours has to be of different winding direction for correctly filling
* holes. But if some individual countours are disjoint, i.e. islands, we
* have to reorient them so that:
* - the holes have opposit winding direction (already handled by paper.js)
* - islands have to have the same winding direction as the first child
*
* NOTE: Does NOT handle self-intersecting CompoundPaths.
*/
function reorientPath(path) {
if (path instanceof CompoundPath) {
var children = path.removeChildren(),
2014-01-05 09:59:21 -05:00
length = children.length,
bounds = new Array(length),
counters = new Array(length),
clockwise;
children.sort(function(a, b) {
return b.getBounds().getArea() - a.getBounds().getArea();
});
path.addChildren(children);
clockwise = children[0].isClockwise();
for (var i = 0; i < length; i++) {
bounds[i] = children[i].getBounds();
counters[i] = 0;
}
for (var i = 0; i < length; i++) {
for (var j = 1; j < length; j++) {
if (i !== j && bounds[i].intersects(bounds[j]))
counters[j]++;
}
2013-05-04 02:25:26 -04:00
// Omit the first child
if (i > 0 && counters[i] % 2 === 0)
children[i].setClockwise(clockwise);
}
}
return path;
2014-01-05 09:59:21 -05:00
}
function computeBoolean(path1, path2, operator, subtract) {
// We do not modify the operands themselves
// The result might not belong to the same type
// i.e. subtraction(A:Path, B:Path):CompoundPath etc.
// We call reduce() on both cloned paths to simplify compound paths and
// remove empty curves. We also apply matrices to both paths in case
// they were transformed.
var singlePathOp = path1 === path2;
path1 = reorientPath(path1.clone(false).reduce().applyMatrix());
if (!singlePathOp)
path2 = reorientPath(path2.clone(false).reduce().applyMatrix());
// Do operator specific calculations before we begin
2013-12-29 07:38:04 -05:00
// Make both paths at clockwise orientation, except when @subtract = true
// We need both paths at opposit orientation for subtraction
if (!path1.isClockwise())
2013-09-22 21:18:22 -04:00
path1.reverse();
if (!singlePathOp && !(subtract ^ path2.isClockwise()))
2013-09-22 21:18:22 -04:00
path2.reverse();
var i, j, l, lj, segment, wind,
2014-02-17 14:59:38 -05:00
point, startSeg, crv, length, parent, v, horizontal,
curveChain = [],
windings = [],
lengths = [],
windMedian, lenCurves,
paths = [],
segments = [],
// Aggregate of all curves in both operands, monotonic in y
monoCurves = [],
result = new CompoundPath(),
tolerance = /*#=*/ Numerical.TOLERANCE,
intersections = singlePathOp ? path1.getSelfIntersections(true)
: path1.getIntersections(path2, true);
// Split curves at intersections on both paths.
PathItem._splitPath(intersections);
2013-12-29 07:38:04 -05:00
// Collect all sub paths and segments
paths.push.apply(paths, path1._children || [path1]);
if (!singlePathOp)
paths.push.apply(paths, path2._children || [path2]);
2014-01-25 23:39:51 -05:00
2014-02-17 14:59:38 -05:00
for (i = 0, l = paths.length; i < l; i++) {
2013-12-29 07:38:04 -05:00
segments.push.apply(segments, paths[i].getSegments());
monoCurves.push.apply(monoCurves, paths[i]._getMonoCurves());
}
2013-12-29 07:38:04 -05:00
// Propagate the winding contribution. Winding contribution of curves
// does not change between two intersections.
// First, sort all segments with an intersection to the begining.
segments.sort(function(a, b) {
2014-02-19 18:32:15 -05:00
var _a = a._intersection,
_b = b._intersection;
return !_a && !_b || _a && _b ? 0 : _a ? -1 : 1;
2013-12-29 07:38:04 -05:00
});
for (i = 0, l = segments.length; i < l; i++) {
segment = segments[i];
2014-02-17 14:59:38 -05:00
if (segment._winding != null)
continue;
2013-12-29 07:38:04 -05:00
// Here we try to determine the most probable winding number
// contribution for this curve-chain. Once we have enough
// confidence in the winding contribution, we can propagate it
// until the intersection or end of a curve chain.
curveChain.length = lengths.length = 0;
lenCurves = 0;
2013-12-29 07:38:04 -05:00
startSeg = segment;
do {
2013-12-29 07:38:04 -05:00
curveChain.push(segment);
lenCurves += segment.getCurve().getLength();
lengths.push(lenCurves);
2013-12-29 07:38:04 -05:00
// Continue with next curve
segment = segment.getNext();
2014-02-17 14:59:38 -05:00
} while (segment && !segment._intersection && segment !== startSeg);
2014-01-25 23:39:51 -05:00
// Select the median winding of three random points along this
2014-01-05 09:59:21 -05:00
// curve chain, as a representative winding number. The
// random selection gives a better chance of returning a
// correct winding than equally dividing the curve chain, with
// the same (amortised) time.
windings.length = 0;
for (wind = 0; wind < 3; wind++) {
length = lenCurves * Math.random();
for (j = 0, lj = lengths.length ; j <= lj; j++)
2014-01-25 23:39:51 -05:00
if (lengths[j] >= length) {
length = j > 0 ? length - lengths[j-1] : length;
break;
2013-12-29 07:38:04 -05:00
}
crv = curveChain[j].getCurve();
point = crv.getPointAt(length);
v = crv.getValues();
horizontal = Curve.isLinear(v) && Math.abs(v[1] - v[7]) < tolerance;
windMedian = PathItem._getWinding(point, monoCurves, horizontal);
// While subtracting, we need to omit this curve if this
// curve is contributing to the second operand and is outside
// the first operand.
parent = crv._path;
if (parent._parent instanceof CompoundPath)
parent = parent._parent;
if (subtract && (parent._id === path2._id &&
2014-01-25 23:39:51 -05:00
!path1._getWinding(point, horizontal) ||
2014-01-05 09:59:21 -05:00
(parent._id === path1._id &&
2014-01-25 23:39:51 -05:00
path2._getWinding(point, horizontal)))) {
windMedian = 0;
2013-12-29 07:38:04 -05:00
}
windings[wind] = windMedian;
}
windings.sort();
windMedian = windings[1];
2013-12-29 07:38:04 -05:00
// Assign the winding to the entire curve chain
for (j = curveChain.length - 1; j >= 0; j--)
curveChain[j]._winding = windMedian;
}
2013-12-29 07:38:04 -05:00
// Trace closed contours and insert them into the result;
paths = PathItem._tracePaths(segments, operator);
for (i = 0, l = paths.length; i < l; i++)
result.addChild(paths[i], true);
// Delete the proxies
2013-05-04 06:38:19 -04:00
path1.remove();
if (!singlePathOp)
path2.remove();
// And then, we are done.
return result.reduce();
2014-01-05 09:59:21 -05:00
}
2014-01-05 09:59:21 -05:00
// Boolean operators return true if a curve with the given winding
// contribution contributes to the final result or not. They are called
// for each curve in the graph after curves in the operands are
// split at intersections.
return /** @lends Path# */{
/**
* {@grouptitle Boolean Path Operations}
*
* Merges the geometry of the specified path from this path's
* geometry and returns the result as a new path item.
2013-09-21 09:26:14 -04:00
*
* @param {PathItem} path the path to unite with
* @return {PathItem} the resulting path item
*/
2014-01-25 23:44:55 -05:00
unite: function(path) {
return computeBoolean(this, path,
function(w) { return w === 1 || w === 0; }, false);
},
/**
* Intersects the geometry of the specified path with this path's
* geometry and returns the result as a new path item.
2013-09-21 09:26:14 -04:00
*
* @param {PathItem} path the path to intersect with
* @return {PathItem} the resulting path item
*/
2014-01-25 23:44:55 -05:00
intersect: function(path) {
return computeBoolean(this, path,
function(w) { return w === 2; }, false);
},
/**
* Subtracts the geometry of the specified path from this path's
* geometry and returns the result as a new path item.
2013-09-21 09:26:14 -04:00
*
* @param {PathItem} path the path to subtract
* @return {PathItem} the resulting path item
*/
2014-01-25 23:44:55 -05:00
subtract: function(path) {
return computeBoolean(this, path,
function(w) { return w === 1; }, true);
},
// Compound boolean operators combine the basic boolean operations such
// as union, intersection, subtract etc.
/**
* Excludes the intersection of the geometry of the specified path with
* this path's geometry and returns the result as a new group item.
2013-09-21 09:26:14 -04:00
*
* @param {PathItem} path the path to exclude the intersection of
* @return {Group} the resulting group item
*/
exclude: function(path) {
return new Group([this.subtract(path), path.subtract(this)]);
},
/**
* Splits the geometry of this path along the geometry of the specified
* path returns the result as a new group item.
2013-09-21 09:26:14 -04:00
*
* @param {PathItem} path the path to divide by
* @return {Group} the resulting group item
*/
divide: function(path) {
return new Group([this.subtract(path), this.intersect(path)]);
}
2014-01-05 09:59:21 -05:00
};
});