mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-01 02:38:43 -05:00
Move boolean code into its own file, and add information comments again.
This commit is contained in:
parent
639ff7f03f
commit
90e3dd201a
3 changed files with 373 additions and 339 deletions
|
@ -80,6 +80,7 @@ var paper = new function() {
|
|||
/*#*/ include('path/CompoundPath.js');
|
||||
/*#*/ include('path/PathFlattener.js');
|
||||
/*#*/ include('path/PathFitter.js');
|
||||
/*#*/ include('path/PathItem.Boolean.js');
|
||||
|
||||
/*#*/ include('text/TextItem.js');
|
||||
/*#*/ include('text/PointText.js');
|
||||
|
|
372
src/path/PathItem.Boolean.js
Normal file
372
src/path/PathItem.Boolean.js
Normal file
|
@ -0,0 +1,372 @@
|
|||
/*
|
||||
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
|
||||
* http://paperjs.org/
|
||||
*
|
||||
* Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey
|
||||
* http://lehni.org/ & http://jonathanpuckey.com/
|
||||
*
|
||||
* Distributed under the MIT license. See LICENSE file for details.
|
||||
*
|
||||
* All rights reserved.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Geometric Vector Boolean Operations
|
||||
*
|
||||
* This is mostly written for clarity and compatibility, not optimised for
|
||||
* performance, and has to be tested heavily for stability.
|
||||
*
|
||||
* Supported
|
||||
* - paperjs Path and CompoundPath objects
|
||||
* - Boolean Union
|
||||
* - Boolean Intersection
|
||||
* - Boolean Subtraction
|
||||
* - Resolving a self-intersecting Path
|
||||
*
|
||||
* Not supported yet
|
||||
* - Boolean operations on self-intersecting Paths
|
||||
* - Paths are clones of each other that ovelap exactly on top of each other!
|
||||
*
|
||||
* @author Harikrishnan Gopalakrishnan
|
||||
* http://hkrish.com/playground/paperjs/booleanStudy.html
|
||||
*/
|
||||
|
||||
PathItem.inject({
|
||||
|
||||
/**
|
||||
* A boolean operator is a binary operator function of the form
|
||||
* f( isPath1:boolean, isInsidePath1:Boolean, isInsidePath2:Boolean ) :Boolean
|
||||
*
|
||||
* Boolean operator determines whether a curve segment in the operands is part
|
||||
* of the boolean result, and will be called for each curve segment in the graph after
|
||||
* all the intersections between the operands are calculated and curves in the operands
|
||||
* are split at intersections.
|
||||
*
|
||||
* These functions should have a name ( "union", "subtraction" etc. below ), if we need to
|
||||
* do operator specific operations on paths inside the computeBoolean function.
|
||||
* for example: if the name of the operator is "subtraction" then we need to reverse the second
|
||||
* operand. Subtraction is neither associative nor commutative.
|
||||
*
|
||||
* The boolean operator should return a Boolean value indicating whether to keep the curve or not.
|
||||
* return true - keep the curve
|
||||
* return false - discard the curve
|
||||
*/
|
||||
unite: function( path, _cache ){
|
||||
var unionOp = function union( isPath1, isInsidePath1, isInsidePath2 ){
|
||||
return ( isInsidePath1 || isInsidePath2 )? false : true;
|
||||
};
|
||||
return this._computeBoolean( this, path, unionOp, _cache );
|
||||
},
|
||||
|
||||
intersect: function( path, _cache ){
|
||||
var intersectionOp = function intersection( isPath1, isInsidePath1, isInsidePath2 ){
|
||||
return ( !isInsidePath1 && !isInsidePath2 )? false : true;
|
||||
};
|
||||
return this._computeBoolean( this, path, intersectionOp, _cache );
|
||||
},
|
||||
|
||||
subtract: function( path, _cache ){
|
||||
var subtractionOp = function subtraction( isPath1, isInsidePath1, isInsidePath2 ){
|
||||
return ( (isPath1 && isInsidePath2) || (!isPath1 && !isInsidePath1) )? false : true;
|
||||
};
|
||||
return this._computeBoolean( this, path, subtractionOp, _cache );
|
||||
},
|
||||
|
||||
/*
|
||||
* Compound boolean operators combine the basic boolean operations such as union, intersection,
|
||||
* subtract etc.
|
||||
*
|
||||
* TODO: cache the split objects and find a way to properly clone them!
|
||||
*/
|
||||
// a.k.a. eXclusiveOR
|
||||
exclude: function( path ){
|
||||
var res1 = this.subtract( path );
|
||||
var res2 = path.subtract( this );
|
||||
var res = new Group( [res1, res2] );
|
||||
return res;
|
||||
},
|
||||
|
||||
// Divide path1 by path2
|
||||
divide: function( path ){
|
||||
var res1 = this.subtract( path );
|
||||
var res2 = this.intersect( path );
|
||||
var res = new Group( [res1, res2] );
|
||||
return res;
|
||||
},
|
||||
|
||||
_splitPath: function( _ixs, other ) {
|
||||
// Sort function for sorting intersections in the descending order
|
||||
function sortIx( a, b ) { return b.parameter - a.parameter; }
|
||||
other = other || false;
|
||||
var i, j, k, l, len, ixs, ix, path, crv, vals;
|
||||
var ixPoint, nuSeg;
|
||||
var paths = {}, lastPathId = null;
|
||||
for (i = 0, l = _ixs.length; i < l; i++) {
|
||||
ix = ( other )? _ixs[i].getIntersection() : _ixs[i];
|
||||
if( !paths[ix.path.id] ){
|
||||
paths[ix.path.id] = ix.path;
|
||||
}
|
||||
if( !ix.curve._ixParams ){ix.curve._ixParams = []; }
|
||||
ix.curve._ixParams.push( { parameter: ix.parameter, pair: ix.getIntersection() } );
|
||||
}
|
||||
for (k in paths) {
|
||||
if( !paths.hasOwnProperty( k ) ){ continue; }
|
||||
path = paths[k];
|
||||
var lastNode = path.lastSegment, firstNode = path.firstSegment;
|
||||
var nextNode = null, left = null, right = null, parts = null, isLinear;
|
||||
var handleIn, handleOut;
|
||||
while( nextNode !== firstNode){
|
||||
nextNode = ( nextNode )? nextNode.previous: lastNode;
|
||||
if( nextNode.curve._ixParams ){
|
||||
ixs = nextNode.curve._ixParams;
|
||||
ixs.sort( sortIx );
|
||||
crv = nextNode.getCurve();
|
||||
isLinear = crv.isLinear();
|
||||
crv = vals = null;
|
||||
for (i = 0, l = ixs.length; i < l; i++) {
|
||||
ix = ixs[i];
|
||||
crv = nextNode.getCurve();
|
||||
if( !vals ) vals = crv.getValues();
|
||||
if( ix.parameter === 0.0 || ix.parameter === 1.0 ){
|
||||
// Intersection is on an existing node
|
||||
// no need to create a new segment,
|
||||
// we just link the corresponding intersections together
|
||||
nuSeg = ( ix.parameter === 0.0 )? crv.segment1 : crv.segment2;
|
||||
nuSeg._ixPair = ix.pair;
|
||||
nuSeg._ixPair._segment = nuSeg;
|
||||
} else {
|
||||
parts = Curve.subdivide( vals, ix.parameter );
|
||||
left = parts[0];
|
||||
right = parts[1];
|
||||
handleIn = handleOut = null;
|
||||
ixPoint = new Point( right[0], right[1] );
|
||||
if( !isLinear ){
|
||||
crv.segment1.handleOut = new Point( left[2] - left[0], left[3] - left[1] );
|
||||
crv.segment2.handleIn = new Point( right[4] - right[6], right[5] - right[7] );
|
||||
handleIn = new Point( left[4] - ixPoint.x, left[5] - ixPoint.y );
|
||||
handleOut = new Point( right[2] - ixPoint.x, right[3] - ixPoint.y );
|
||||
}
|
||||
nuSeg = new Segment( ixPoint, handleIn, handleOut );
|
||||
nuSeg._ixPair = ix.pair;
|
||||
nuSeg._ixPair._segment = nuSeg;
|
||||
path.insert( nextNode.index + 1, nuSeg );
|
||||
}
|
||||
for (j = i + 1; j < l; j++) {
|
||||
ixs[j].parameter = ixs[j].parameter / ix.parameter;
|
||||
}
|
||||
vals = left;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
/**
|
||||
* To deal with a HTML canvas requirement where CompoundPaths' child contours
|
||||
* has to be of different winding direction for correctly filling holes.
|
||||
* But if some individual countours are disjoint, i.e. islands, we have to
|
||||
* reorient them so that
|
||||
* the holes have opposit winding direction ( already handled by paperjs )
|
||||
* islands has to have same winding direction ( as the first child of the path )
|
||||
*
|
||||
* Does NOT handle selfIntersecting CompoundPaths.
|
||||
*
|
||||
* @param {CompoundPath} path - Input CompoundPath, Note: This path could be modified if need be.
|
||||
* @return {boolean} the winding direction of the base contour( true if clockwise )
|
||||
*/
|
||||
_reorientCompoundPath: function( path ){
|
||||
if( !(path instanceof CompoundPath) ){
|
||||
path.closed = true;
|
||||
return path.clockwise;
|
||||
}
|
||||
var children = path.children, len = children.length, baseWinding;
|
||||
var bounds = new Array( len );
|
||||
var tmparray = new Array( len );
|
||||
baseWinding = children[0].clockwise;
|
||||
// Omit the first path
|
||||
for (i = 0; i < len; i++) {
|
||||
children[i].closed = true;
|
||||
bounds[i] = children[i].bounds;
|
||||
tmparray[i] = 0;
|
||||
}
|
||||
for (i = 0; i < len; i++) {
|
||||
var p1 = children[i];
|
||||
for (j = 0; j < len; j++) {
|
||||
var p2 = children[j];
|
||||
if( i !== j && bounds[i].contains( bounds[j] ) ){
|
||||
tmparray[j]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (i = 1; i < len; i++) {
|
||||
if ( tmparray[i] % 2 === 0 ) {
|
||||
children[i].clockwise = baseWinding;
|
||||
}
|
||||
}
|
||||
return baseWinding;
|
||||
},
|
||||
|
||||
_reversePath: function( path ){
|
||||
var baseWinding;
|
||||
if( path instanceof CompoundPath ){
|
||||
var children = path.children, i, len;
|
||||
for (i = 0, len = children.length; i < len; i++) {
|
||||
children[i].reverse();
|
||||
children[i]._curves = null;
|
||||
}
|
||||
baseWinding = children[0].clockwise;
|
||||
} else {
|
||||
path.reverse();
|
||||
baseWinding = path.clockwise;
|
||||
path._curves = null;
|
||||
}
|
||||
return baseWinding;
|
||||
},
|
||||
|
||||
_computeBoolean: function( path1, path2, operator, _splitCache ){
|
||||
var _path1, _path2, path1Clockwise, path2Clockwise;
|
||||
var ixs, path1Id, path2Id;
|
||||
// We do not modify the operands themselves
|
||||
// The result might not belong to the same type
|
||||
// i.e. subtraction( A:Path, B:Path ):CompoundPath etc.
|
||||
_path1 = path1.clone();
|
||||
_path2 = path2.clone();
|
||||
_path1.style = _path2.style = null;
|
||||
_path1.selected = _path2.selected = false;
|
||||
path1Clockwise = this._reorientCompoundPath( _path1 );
|
||||
path2Clockwise = this._reorientCompoundPath( _path2 );
|
||||
path1Id = _path1.id;
|
||||
path2Id = _path2.id;
|
||||
// Calculate all the intersections
|
||||
ixs = ( _splitCache && _splitCache.intersections )?
|
||||
_splitCache.intersections : _path1.getIntersections( _path2 );
|
||||
// if we have a empty _splitCache object as an operand,
|
||||
// skip calculating boolean and cache the intersections
|
||||
if( _splitCache && !_splitCache.intersections ){
|
||||
_splitCache.intersections = ixs;
|
||||
return;
|
||||
}
|
||||
this._splitPath( ixs );
|
||||
this._splitPath( ixs, true );
|
||||
path1Id = _path1.id;
|
||||
path2Id = _path2.id;
|
||||
// Do operator specific calculations before we begin
|
||||
if( operator.name === "subtraction" ) {
|
||||
path2Clockwise = this._reversePath( _path2 );
|
||||
}
|
||||
|
||||
var i, j, len, path, crv;
|
||||
var paths = [];
|
||||
if( _path1 instanceof CompoundPath ){
|
||||
paths = paths.concat( _path1.children );
|
||||
} else {
|
||||
paths = [ _path1 ];
|
||||
}
|
||||
if( _path2 instanceof CompoundPath ){
|
||||
paths = paths.concat( _path2.children );
|
||||
} else {
|
||||
paths.push( _path2 );
|
||||
}
|
||||
// step 1: discard invalid links according to the boolean operator
|
||||
var lastNode, firstNode, nextNode, midPoint, insidePath1, insidePath2;
|
||||
var thisId, thisWinding, contains, subtractionOp = (operator.name === 'subtraction');
|
||||
for (i = 0, len = paths.length; i < len; i++) {
|
||||
insidePath1 = insidePath2 = false;
|
||||
path = paths[i];
|
||||
thisId = ( path.parent instanceof CompoundPath )? path.parent.id : path.id;
|
||||
thisWinding = path.clockwise;
|
||||
lastNode = path.lastSegment;
|
||||
firstNode = path.firstSegment;
|
||||
nextNode = null;
|
||||
while( nextNode !== firstNode){
|
||||
nextNode = ( nextNode )? nextNode.previous: lastNode;
|
||||
crv = nextNode.curve;
|
||||
midPoint = crv.getPoint( 0.5 );
|
||||
if( thisId !== path1Id ){
|
||||
contains = _path1.
|
||||
contains( midPoint );
|
||||
insidePath1 = (thisWinding === path1Clockwise || subtractionOp )? contains :
|
||||
contains && !this._testOnCurve( _path1, midPoint );
|
||||
}
|
||||
if( thisId !== path2Id ){
|
||||
contains = _path2.contains( midPoint );
|
||||
insidePath2 = (thisWinding === path2Clockwise )? contains :
|
||||
contains && !this._testOnCurve( _path2, midPoint );
|
||||
}
|
||||
if( !operator( thisId === path1Id, insidePath1, insidePath2 ) ){
|
||||
crv._INVALID = true;
|
||||
// markPoint( midPoint, '+' );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Final step: Retrieve the resulting paths from the graph
|
||||
var boolResult = new CompoundPath();
|
||||
var node, nuNode, nuPath, nodeList = [], handle;
|
||||
for (i = 0, len = paths.length; i < len; i++) {
|
||||
nodeList = nodeList.concat( paths[i].segments );
|
||||
}
|
||||
for (i = 0, len = nodeList.length; i < len; i++) {
|
||||
node = nodeList[i];
|
||||
if( node.curve._INVALID || node._visited ){ continue; }
|
||||
path = node.path;
|
||||
thisId = ( path.parent instanceof CompoundPath )? path.parent.id : path.id;
|
||||
thisWinding = path.clockwise;
|
||||
nuPath = new Path();
|
||||
firstNode = null;
|
||||
firstNode_ix = null;
|
||||
if( node.previous.curve._INVALID ) {
|
||||
node.handleIn = ( node._ixPair )?
|
||||
node._ixPair.getIntersection()._segment.handleIn : [ 0, 0 ];
|
||||
}
|
||||
while( node && !node._visited && ( node !== firstNode && node !== firstNode_ix ) ){
|
||||
node._visited = true;
|
||||
firstNode = ( firstNode )? firstNode: node;
|
||||
firstNode_ix = ( !firstNode_ix && firstNode._ixPair )?
|
||||
firstNode._ixPair.getIntersection()._segment: firstNode_ix;
|
||||
// node._ixPair is this node's intersection CurveLocation object
|
||||
// node._ixPair.getIntersection() is the other CurveLocation object this node intersects with
|
||||
nextNode = ( node._ixPair && node.curve._INVALID )? node._ixPair.getIntersection()._segment : node;
|
||||
if( node._ixPair ) {
|
||||
nextNode._visited = true;
|
||||
nuNode = new Segment( node.point, node.handleIn, nextNode.handleOut );
|
||||
nuPath.add( nuNode );
|
||||
node = nextNode;
|
||||
path = node.path;
|
||||
thisWinding = path.clockwise;
|
||||
} else {
|
||||
nuPath.add( node );
|
||||
}
|
||||
node = node.next;
|
||||
}
|
||||
if( nuPath.segments.length > 1 ) {
|
||||
// avoid stray segments and incomplete paths
|
||||
if( nuPath.segments.length > 2 || !nuPath.curves[0].isLinear() ){
|
||||
nuPath.closed = true;
|
||||
boolResult.addChild( nuPath, true );
|
||||
}
|
||||
}
|
||||
}
|
||||
// Delete the proxies
|
||||
_path1.remove();
|
||||
_path2.remove();
|
||||
// And then, we are done.
|
||||
return boolResult.reduce();
|
||||
},
|
||||
|
||||
_testOnCurve: function( path, point ){
|
||||
var res = 0;
|
||||
var crv = path.getCurves();
|
||||
var i = 0;
|
||||
var bounds = path.bounds;
|
||||
if( bounds && bounds.contains( point ) ){
|
||||
for( i = 0; i < crv.length && !res; i++ ){
|
||||
var crvi = crv[i];
|
||||
if( crvi.bounds.contains( point ) && crvi.getParameterOf( point ) ){
|
||||
res = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
});
|
|
@ -177,345 +177,6 @@ var PathItem = this.PathItem = Item.extend(/** @lends PathItem# */{
|
|||
}
|
||||
},
|
||||
|
||||
|
||||
/**
|
||||
* A boolean operator is a binary operator function of the form
|
||||
* f( isPath1:boolean, isInsidePath1:Boolean, isInsidePath2:Boolean ) :Boolean
|
||||
*
|
||||
* Boolean operator determines whether a curve segment in the operands is part
|
||||
* of the boolean result, and will be called for each curve segment in the graph after
|
||||
* all the intersections between the operands are calculated and curves in the operands
|
||||
* are split at intersections.
|
||||
*
|
||||
* These functions should have a name ( "union", "subtraction" etc. below ), if we need to
|
||||
* do operator specific operations on paths inside the computeBoolean function.
|
||||
* for example: if the name of the operator is "subtraction" then we need to reverse the second
|
||||
* operand. Subtraction is neither associative nor commutative.
|
||||
*
|
||||
* The boolean operator should return a Boolean value indicating whether to keep the curve or not.
|
||||
* return true - keep the curve
|
||||
* return false - discard the curve
|
||||
*/
|
||||
unite: function( path, _cache ){
|
||||
var unionOp = function union( isPath1, isInsidePath1, isInsidePath2 ){
|
||||
return ( isInsidePath1 || isInsidePath2 )? false : true;
|
||||
};
|
||||
return this._computeBoolean( this, path, unionOp, _cache );
|
||||
},
|
||||
|
||||
intersect: function( path, _cache ){
|
||||
var intersectionOp = function intersection( isPath1, isInsidePath1, isInsidePath2 ){
|
||||
return ( !isInsidePath1 && !isInsidePath2 )? false : true;
|
||||
};
|
||||
return this._computeBoolean( this, path, intersectionOp, _cache );
|
||||
},
|
||||
|
||||
subtract: function( path, _cache ){
|
||||
var subtractionOp = function subtraction( isPath1, isInsidePath1, isInsidePath2 ){
|
||||
return ( (isPath1 && isInsidePath2) || (!isPath1 && !isInsidePath1) )? false : true;
|
||||
};
|
||||
return this._computeBoolean( this, path, subtractionOp, _cache );
|
||||
},
|
||||
|
||||
/*
|
||||
* Compound boolean operators combine the basic boolean operations such as union, intersection,
|
||||
* subtract etc.
|
||||
*
|
||||
* TODO: cache the split objects and find a way to properly clone them!
|
||||
*/
|
||||
// a.k.a. eXclusiveOR
|
||||
exclude: function( path ){
|
||||
var res1 = this.subtract( path );
|
||||
var res2 = path.subtract( this );
|
||||
var res = new Group( [res1, res2] );
|
||||
return res;
|
||||
},
|
||||
|
||||
// Divide path1 by path2
|
||||
divide: function( path ){
|
||||
var res1 = this.subtract( path );
|
||||
var res2 = this.intersect( path );
|
||||
var res = new Group( [res1, res2] );
|
||||
return res;
|
||||
},
|
||||
|
||||
_splitPath: function( _ixs, other ) {
|
||||
// Sort function for sorting intersections in the descending order
|
||||
function sortIx( a, b ) { return b.parameter - a.parameter; }
|
||||
other = other || false;
|
||||
var i, j, k, l, len, ixs, ix, path, crv, vals;
|
||||
var ixPoint, nuSeg;
|
||||
var paths = {}, lastPathId = null;
|
||||
for (i = 0, l = _ixs.length; i < l; i++) {
|
||||
ix = ( other )? _ixs[i].getIntersection() : _ixs[i];
|
||||
if( !paths[ix.path.id] ){
|
||||
paths[ix.path.id] = ix.path;
|
||||
}
|
||||
if( !ix.curve._ixParams ){ix.curve._ixParams = []; }
|
||||
ix.curve._ixParams.push( { parameter: ix.parameter, pair: ix.getIntersection() } );
|
||||
}
|
||||
for (k in paths) {
|
||||
if( !paths.hasOwnProperty( k ) ){ continue; }
|
||||
path = paths[k];
|
||||
var lastNode = path.lastSegment, firstNode = path.firstSegment;
|
||||
var nextNode = null, left = null, right = null, parts = null, isLinear;
|
||||
var handleIn, handleOut;
|
||||
while( nextNode !== firstNode){
|
||||
nextNode = ( nextNode )? nextNode.previous: lastNode;
|
||||
if( nextNode.curve._ixParams ){
|
||||
ixs = nextNode.curve._ixParams;
|
||||
ixs.sort( sortIx );
|
||||
crv = nextNode.getCurve();
|
||||
isLinear = crv.isLinear();
|
||||
crv = vals = null;
|
||||
for (i = 0, l = ixs.length; i < l; i++) {
|
||||
ix = ixs[i];
|
||||
crv = nextNode.getCurve();
|
||||
if( !vals ) vals = crv.getValues();
|
||||
if( ix.parameter === 0.0 || ix.parameter === 1.0 ){
|
||||
// Intersection is on an existing node
|
||||
// no need to create a new segment,
|
||||
// we just link the corresponding intersections together
|
||||
nuSeg = ( ix.parameter === 0.0 )? crv.segment1 : crv.segment2;
|
||||
nuSeg._ixPair = ix.pair;
|
||||
nuSeg._ixPair._segment = nuSeg;
|
||||
} else {
|
||||
parts = Curve.subdivide( vals, ix.parameter );
|
||||
left = parts[0];
|
||||
right = parts[1];
|
||||
handleIn = handleOut = null;
|
||||
ixPoint = new Point( right[0], right[1] );
|
||||
if( !isLinear ){
|
||||
crv.segment1.handleOut = new Point( left[2] - left[0], left[3] - left[1] );
|
||||
crv.segment2.handleIn = new Point( right[4] - right[6], right[5] - right[7] );
|
||||
handleIn = new Point( left[4] - ixPoint.x, left[5] - ixPoint.y );
|
||||
handleOut = new Point( right[2] - ixPoint.x, right[3] - ixPoint.y );
|
||||
}
|
||||
nuSeg = new Segment( ixPoint, handleIn, handleOut );
|
||||
nuSeg._ixPair = ix.pair;
|
||||
nuSeg._ixPair._segment = nuSeg;
|
||||
path.insert( nextNode.index + 1, nuSeg );
|
||||
}
|
||||
for (j = i + 1; j < l; j++) {
|
||||
ixs[j].parameter = ixs[j].parameter / ix.parameter;
|
||||
}
|
||||
vals = left;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
/**
|
||||
* To deal with a HTML canvas requirement where CompoundPaths' child contours
|
||||
* has to be of different winding direction for correctly filling holes.
|
||||
* But if some individual countours are disjoint, i.e. islands, we have to
|
||||
* reorient them so that
|
||||
* the holes have opposit winding direction ( already handled by paperjs )
|
||||
* islands has to have same winding direction ( as the first child of the path )
|
||||
*
|
||||
* Does NOT handle selfIntersecting CompoundPaths.
|
||||
*
|
||||
* @param {CompoundPath} path - Input CompoundPath, Note: This path could be modified if need be.
|
||||
* @return {boolean} the winding direction of the base contour( true if clockwise )
|
||||
*/
|
||||
_reorientCompoundPath: function( path ){
|
||||
if( !(path instanceof CompoundPath) ){
|
||||
path.closed = true;
|
||||
return path.clockwise;
|
||||
}
|
||||
var children = path.children, len = children.length, baseWinding;
|
||||
var bounds = new Array( len );
|
||||
var tmparray = new Array( len );
|
||||
baseWinding = children[0].clockwise;
|
||||
// Omit the first path
|
||||
for (i = 0; i < len; i++) {
|
||||
children[i].closed = true;
|
||||
bounds[i] = children[i].bounds;
|
||||
tmparray[i] = 0;
|
||||
}
|
||||
for (i = 0; i < len; i++) {
|
||||
var p1 = children[i];
|
||||
for (j = 0; j < len; j++) {
|
||||
var p2 = children[j];
|
||||
if( i !== j && bounds[i].contains( bounds[j] ) ){
|
||||
tmparray[j]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (i = 1; i < len; i++) {
|
||||
if ( tmparray[i] % 2 === 0 ) {
|
||||
children[i].clockwise = baseWinding;
|
||||
}
|
||||
}
|
||||
return baseWinding;
|
||||
},
|
||||
|
||||
_reversePath: function( path ){
|
||||
var baseWinding;
|
||||
if( path instanceof CompoundPath ){
|
||||
var children = path.children, i, len;
|
||||
for (i = 0, len = children.length; i < len; i++) {
|
||||
children[i].reverse();
|
||||
children[i]._curves = null;
|
||||
}
|
||||
baseWinding = children[0].clockwise;
|
||||
} else {
|
||||
path.reverse();
|
||||
baseWinding = path.clockwise;
|
||||
path._curves = null;
|
||||
}
|
||||
return baseWinding;
|
||||
},
|
||||
|
||||
_computeBoolean: function( path1, path2, operator, _splitCache ){
|
||||
var _path1, _path2, path1Clockwise, path2Clockwise;
|
||||
var ixs, path1Id, path2Id;
|
||||
// We do not modify the operands themselves
|
||||
// The result might not belong to the same type
|
||||
// i.e. subtraction( A:Path, B:Path ):CompoundPath etc.
|
||||
_path1 = path1.clone();
|
||||
_path2 = path2.clone();
|
||||
_path1.style = _path2.style = null;
|
||||
_path1.selected = _path2.selected = false;
|
||||
path1Clockwise = this._reorientCompoundPath( _path1 );
|
||||
path2Clockwise = this._reorientCompoundPath( _path2 );
|
||||
path1Id = _path1.id;
|
||||
path2Id = _path2.id;
|
||||
// Calculate all the intersections
|
||||
ixs = ( _splitCache && _splitCache.intersections )?
|
||||
_splitCache.intersections : _path1.getIntersections( _path2 );
|
||||
// if we have a empty _splitCache object as an operand,
|
||||
// skip calculating boolean and cache the intersections
|
||||
if( _splitCache && !_splitCache.intersections ){
|
||||
_splitCache.intersections = ixs;
|
||||
return;
|
||||
}
|
||||
this._splitPath( ixs );
|
||||
this._splitPath( ixs, true );
|
||||
path1Id = _path1.id;
|
||||
path2Id = _path2.id;
|
||||
// Do operator specific calculations before we begin
|
||||
if( operator.name === "subtraction" ) {
|
||||
path2Clockwise = this._reversePath( _path2 );
|
||||
}
|
||||
|
||||
var i, j, len, path, crv;
|
||||
var paths = [];
|
||||
if( _path1 instanceof CompoundPath ){
|
||||
paths = paths.concat( _path1.children );
|
||||
} else {
|
||||
paths = [ _path1 ];
|
||||
}
|
||||
if( _path2 instanceof CompoundPath ){
|
||||
paths = paths.concat( _path2.children );
|
||||
} else {
|
||||
paths.push( _path2 );
|
||||
}
|
||||
// step 1: discard invalid links according to the boolean operator
|
||||
var lastNode, firstNode, nextNode, midPoint, insidePath1, insidePath2;
|
||||
var thisId, thisWinding, contains, subtractionOp = (operator.name === 'subtraction');
|
||||
for (i = 0, len = paths.length; i < len; i++) {
|
||||
insidePath1 = insidePath2 = false;
|
||||
path = paths[i];
|
||||
thisId = ( path.parent instanceof CompoundPath )? path.parent.id : path.id;
|
||||
thisWinding = path.clockwise;
|
||||
lastNode = path.lastSegment;
|
||||
firstNode = path.firstSegment;
|
||||
nextNode = null;
|
||||
while( nextNode !== firstNode){
|
||||
nextNode = ( nextNode )? nextNode.previous: lastNode;
|
||||
crv = nextNode.curve;
|
||||
midPoint = crv.getPoint( 0.5 );
|
||||
if( thisId !== path1Id ){
|
||||
contains = _path1.
|
||||
contains( midPoint );
|
||||
insidePath1 = (thisWinding === path1Clockwise || subtractionOp )? contains :
|
||||
contains && !this._testOnCurve( _path1, midPoint );
|
||||
}
|
||||
if( thisId !== path2Id ){
|
||||
contains = _path2.contains( midPoint );
|
||||
insidePath2 = (thisWinding === path2Clockwise )? contains :
|
||||
contains && !this._testOnCurve( _path2, midPoint );
|
||||
}
|
||||
if( !operator( thisId === path1Id, insidePath1, insidePath2 ) ){
|
||||
crv._INVALID = true;
|
||||
// markPoint( midPoint, '+' );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Final step: Retrieve the resulting paths from the graph
|
||||
var boolResult = new CompoundPath();
|
||||
var node, nuNode, nuPath, nodeList = [], handle;
|
||||
for (i = 0, len = paths.length; i < len; i++) {
|
||||
nodeList = nodeList.concat( paths[i].segments );
|
||||
}
|
||||
for (i = 0, len = nodeList.length; i < len; i++) {
|
||||
node = nodeList[i];
|
||||
if( node.curve._INVALID || node._visited ){ continue; }
|
||||
path = node.path;
|
||||
thisId = ( path.parent instanceof CompoundPath )? path.parent.id : path.id;
|
||||
thisWinding = path.clockwise;
|
||||
nuPath = new Path();
|
||||
firstNode = null;
|
||||
firstNode_ix = null;
|
||||
if( node.previous.curve._INVALID ) {
|
||||
node.handleIn = ( node._ixPair )?
|
||||
node._ixPair.getIntersection()._segment.handleIn : [ 0, 0 ];
|
||||
}
|
||||
while( node && !node._visited && ( node !== firstNode && node !== firstNode_ix ) ){
|
||||
node._visited = true;
|
||||
firstNode = ( firstNode )? firstNode: node;
|
||||
firstNode_ix = ( !firstNode_ix && firstNode._ixPair )?
|
||||
firstNode._ixPair.getIntersection()._segment: firstNode_ix;
|
||||
// node._ixPair is this node's intersection CurveLocation object
|
||||
// node._ixPair.getIntersection() is the other CurveLocation object this node intersects with
|
||||
nextNode = ( node._ixPair && node.curve._INVALID )? node._ixPair.getIntersection()._segment : node;
|
||||
if( node._ixPair ) {
|
||||
nextNode._visited = true;
|
||||
nuNode = new Segment( node.point, node.handleIn, nextNode.handleOut );
|
||||
nuPath.add( nuNode );
|
||||
node = nextNode;
|
||||
path = node.path;
|
||||
thisWinding = path.clockwise;
|
||||
} else {
|
||||
nuPath.add( node );
|
||||
}
|
||||
node = node.next;
|
||||
}
|
||||
if( nuPath.segments.length > 1 ) {
|
||||
// avoid stray segments and incomplete paths
|
||||
if( nuPath.segments.length > 2 || !nuPath.curves[0].isLinear() ){
|
||||
nuPath.closed = true;
|
||||
boolResult.addChild( nuPath, true );
|
||||
}
|
||||
}
|
||||
}
|
||||
// Delete the proxies
|
||||
_path1.remove();
|
||||
_path2.remove();
|
||||
// And then, we are done.
|
||||
return boolResult.reduce();
|
||||
},
|
||||
|
||||
_testOnCurve: function( path, point ){
|
||||
var res = 0;
|
||||
var crv = path.getCurves();
|
||||
var i = 0;
|
||||
var bounds = path.bounds;
|
||||
if( bounds && bounds.contains( point ) ){
|
||||
for( i = 0; i < crv.length && !res; i++ ){
|
||||
var crvi = crv[i];
|
||||
if( crvi.bounds.contains( point ) && crvi.getParameterOf( point ) ){
|
||||
res = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Smooth bezier curves without changing the amount of segments or their
|
||||
* points, by only smoothing and adjusting their handle points, for both
|
||||
|
|
Loading…
Reference in a new issue