paper.js/src/path/Path.js

657 lines
18 KiB
JavaScript
Raw Normal View History

var Path = this.Path = PathItem.extend({
beans: true,
initialize: function(/* segments */) {
this.base();
this.closed = false;
this._segments = [];
// Support both passing of segments as array or arguments
// If it is an array, it can also be a description of a point, so
// check its first entry for object as well
var segments = arguments[0];
2011-03-04 16:47:00 -05:00
if (!segments || !Base.isArray(segments)
|| typeof segments[0] != 'object')
segments = arguments;
for (var i = 0, l = segments.length; i < l; i++) {
var seg = Segment.read(segments, i, 1);
this._add(seg);
}
},
/**
* The segments contained within the path.
*/
getSegments: function() {
return this._segments;
},
setSegments: function(segments) {
var l = segments.length;
this._segments = new Array(l);
for(var i = 0; i < l; i++) {
this._segments[i] = Segment.read(segments, i, 1);
}
},
2011-03-04 18:33:37 -05:00
// TODO: Add back to Scriptographer:
getFirstSegment: function() {
return this._segments[0];
},
getLastSegment: function() {
return this._segments[this._segments.length - 1];
},
2011-02-22 04:25:18 -05:00
// TODO: Consider adding getSubPath(a, b), returning a part of the current
// path, with the added benefit that b can be < a, and closed looping is
// taken into account.
// Calculates arclength of a cubic using adaptive simpson integration.
getCurveLength: function(goal) {
var seg0 = this._segments[0], seg1 = this._segments[1];
var z0 = seg0.point,
z1 = seg1.point,
c0 = z0.add(seg0.handleOut),
c1 = z1.add(seg1.handleIn);
// TODO: Check for straight lines and handle separately.
// Calculate the coefficients of a Bezier derivative, divided by 3.
var ax = 3 * (c0.x - c1.x) - z0.x + z1.x;
var bx = 2 * (z0.x + c1.x) - 4 * c0.x;
var cx = c0.x - z0.x;
var ay = 3 * (c0.y - c1.y) - z0.y + z1.y;
var by = 2 * (z0.y + c1.y) - 4 * c0.y;
var cy = c0.y - z0.y;
function ds(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx;
var dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
}
var integral = MathUtils.simpson(ds, 0.0, 1.0, MathUtils.EPSILON, 1.0);
if (integral == null)
throw new Error('Nesting capacity exceeded in Path#getLenght()');
// Multiply by 3 again, as derivative was divided by 3
var length = 3 * integral;
2011-02-28 12:30:08 -05:00
if (goal == undefined || goal < 0 || goal >= length)
return length;
var result = MathUtils.unsimpson(goal, ds, 0, goal / integral,
100 * MathUtils.EPSILON, integral, Math.sqrt(MathUtils.EPSILON), 1);
2011-02-28 12:30:08 -05:00
if (!result)
throw new Error('Nesting capacity exceeded in computing arctime');
return -result.b;
},
_transform: function(matrix, flags) {
var coords = new Array(6);
for (var i = 0, l = this._segments.length; i < l; i++) {
var segment = this._segments[i];
// Use matrix.transform version() that takes arrays of multiple
// points for largely improved performance, as no calls to
// Point.read() and Point constructors are necessary.
var point = segment.point;
var handleIn = segment.handleIn;
if (handleIn.isZero())
handleIn = null;
var handleOut = segment.handleOut;
if (handleOut.isZero())
handleOut = null;
var x = point.x, y = point.y;
coords[0] = x;
coords[1] = y;
var index = 2;
// We need to convert handles to absolute coordinates in order
// to transform them.
if (handleIn) {
coords[index++] = handleIn.x + x;
coords[index++] = handleIn.y + y;
}
if (handleOut) {
coords[index++] = handleOut.x + x;
coords[index++] = handleOut.y + y;
}
matrix.transform(coords, 0, coords, 0, index / 2);
x = point.x = coords[0];
y = point.y = coords[1];
index = 2;
if (handleIn) {
handleIn.x = coords[index++] - x;
handleIn.y = coords[index++] - y;
}
if (handleOut) {
handleOut.x = coords[index++] - x;
handleOut.y = coords[index++] - y;
}
}
},
/**
* Private method that adds a segment to the segment list. It assumes that
* the passed object is a segment already and does not perform any checks.
*/
_add: function(segment, index) {
// If this segment belongs to another path already, clone it before
// adding.
if (segment.path)
segment = new Segment(segment);
segment.path = this;
if (index == undefined) {
this._segments.push(segment);
} else {
this._segments.splice(index, 0, segment);
}
return segment;
},
add: function() {
var segment = Segment.read(arguments);
return segment ? this._add(segment) : null;
},
insert: function(index, segment) {
var segment = Segment.read(arguments, 1);
return segment ? this._add(segment, index) : null;
},
/**
* PostScript-style drawing commands
*/
/**
* Helper method that returns the current segment and checks if we need to
* execute a moveTo() command first.
*/
getCurrentSegment: function() {
if (this._segments.length == 0)
throw('Use a moveTo() command first');
return this._segments[this._segments.length - 1];
},
moveTo: function() {
var segment = Segment.read(arguments);
if (segment && !this._segments.length)
this._add(segment);
},
lineTo: function() {
var segment = Segment.read(arguments);
if (segment)
this._add(segment);
},
/**
* Adds a cubic bezier curve to the path, defined by two handles and a to
* point.
*/
cubicCurveTo: function(handle1, handle2, to) {
// First modify the current segment:
var current = this.currentSegment;
// Convert to relative values:
current.handleOut = new Point(
handle1.x - current.point.x,
handle1.y - current.point.y);
// And add the new segment, with handleIn set to c2
this._add(
new Segment(to, handle2.subtract(to), new Point())
);
},
/**
* Adds a quadratic bezier curve to the path, defined by a handle and a to
* point.
*/
quadraticCurveTo: function(handle, to) {
// This is exact:
// If we have the three quad points: A E D,
// and the cubic is A B C D,
// B = E + 1/3 (A - E)
// C = E + 1/3 (D - E)
var current = this.currentSegment;
var x1 = current.point.x;
var y1 = current.point.y;
this.cubicCurveTo(
handle.add(current.point.subtract(handle).multiply(1/3)),
handle.add(to.subtract(handle).multiply(1/3)),
to
);
},
curveTo: function(through, to, parameter) {
through = new Point(through);
to = new Point(to);
if (parameter == null)
parameter = 0.5;
var current = this.currentSegment.point;
2011-03-02 12:23:45 -05:00
// handle = (through - (1 - t)^2 * current - t^2 * to) /
// (2 * (1 - t) * t)
var t1 = 1 - parameter;
var handle = through.subtract(
current.multiply(t1 * t1)).subtract(
to.multiply(parameter * parameter)).divide(
2.0 * parameter * t1);
if (handle.isNaN())
throw new Error(
"Cannot put a curve through points with parameter="
+ parameter);
this.quadraticCurveTo(handle, to);
},
arcTo: function(to, clockwise) {
var through, to;
// Get the start point:
var current = this.currentSegment;
if (arguments[1] && typeof arguments[1] != 'boolean') {
through = new Point(arguments[0]);
to = new Point(arguments[1]);
} else {
if (clockwise === null)
clockwise = true;
var middle = current.point.add(to).divide(2);
var step = middle.subtract(current.point);
through = clockwise
? middle.subtract(-step.y, step.x)
: middle.add(-step.y, step.x);
}
var x1 = current.point.x, x2 = through.x, x3 = to.x;
var y1 = current.point.y, y2 = through.y, y3 = to.y;
var f = x3 * x3 - x3 * x2 - x1 * x3 + x1 * x2 + y3 * y3 - y3 * y2
- y1 * y3 + y1 * y2;
var g = x3 * y1 - x3 * y2 + x1 * y2 - x1 * y3 + x2 * y3 - x2 * y1;
var m = g == 0 ? 0 : f / g;
var c = (m * y2) - x2 - x1 - (m * y1);
var d = (m * x1) - y1 - y2 - (x2 * m);
var e = (x1 * x2) + (y1 * y2) - (m * x1 * y2) + (m * x2 * y1);
var centerX = -c / 2;
var centerY = -d / 2;
var radius = Math.sqrt(centerX * centerX + centerY * centerY - e);
// Note: reversing the Y equations negates the angle to adjust
// for the upside down coordinate system.
var angle = Math.atan2(centerY - y1, x1 - centerX);
var middle = Math.atan2(centerY - y2, x2 - centerX);
var extent = Math.atan2(centerY - y3, x3 - centerX);
var diff = middle - angle;
if (diff < -Math.PI)
diff += Math.PI * 2;
else if (diff > Math.PI)
diff -= Math.PI * 2;
extent -= angle;
if (extent <= 0.0)
extent += Math.PI * 2;
if (diff < 0) extent = Math.PI * 2 - extent;
else extent = -extent;
angle = -angle;
var ext = Math.abs(extent);
var arcSegs;
if (ext >= 2 * Math.PI) arcSegs = 4;
else arcSegs = Math.ceil(ext * 2 / Math.PI);
var inc = extent;
if (inc > 2 * Math.PI) inc = 2 * Math.PI;
else if (inc < -2 * Math.PI) inc = -2 * Math.PI;
inc /= arcSegs;
var halfInc = inc / 2;
var z = 4 / 3 * Math.sin(halfInc) / (1 + Math.cos(halfInc));
for (var i = 0; i <= arcSegs; i++) {
var relx = Math.cos(angle);
var rely = Math.sin(angle);
var pt = new Point(centerX + relx * radius,
centerY + rely * radius);
var out;
if (i == arcSegs) out = null;
else out = new Point(centerX + (relx - z * rely) * radius - pt.x,
centerY + (rely + z * relx) * radius - pt.y);
if (i == 0) {
// Modify startSegment
current.handleOut = out;
} else {
// Add new Segment
var inPoint = new Point(
centerX + (relx + z * rely) * radius - pt.x,
centerY + (rely - z * relx) * radius - pt.y);
this._add(new Segment(pt, inPoint, out));
}
angle += inc;
}
},
lineBy: function() {
var vector = Point.read(arguments);
if (vector) {
var current = this.currentSegment;
this.lineTo(current.point.add(vector));
}
},
curveBy: function(throughVector, toVector, parameter) {
throughVector = Point.read(throughVector);
toVector = Point.read(toVector);
var current = this.currentSegment.point;
2011-03-02 12:23:45 -05:00
this.curveTo(current.add(throughVector), current.add(toVector),
parameter);
},
arcBy: function(throughVector, toVector) {
throughVector = Point.read(throughVector);
toVector = Point.read(toVector);
var current = this.currentSegment.point;
this.arcBy(current.add(throughVector), current.add(toVector));
},
closePath: function() {
this.closed = ture;
},
draw: function(ctx, param) {
if (!param.compound)
ctx.beginPath();
var segments = this._segments;
var length = segments.length;
for (var i = 0; i < length; i++) {
var segment = segments[i];
var x = segment.point.x;
var y = segment.point.y;
var handleIn = segment.handleIn;
if (i == 0) {
ctx.moveTo(x, y);
} else {
if (handleOut.isZero() && handleIn.isZero()) {
ctx.lineTo(x, y);
} else {
ctx.bezierCurveTo(
outX, outY,
handleIn.x + x, handleIn.y + y,
x, y
);
}
}
var handleOut = segment.handleOut;
var outX = handleOut.x + x;
var outY = handleOut.y + y;
}
if (this.closed && length > 1) {
var segment = segments[0];
var x = segment.point.x;
var y = segment.point.y;
var handleIn = segment.handleIn;
ctx.bezierCurveTo(outX, outY, handleIn.x + x, handleIn.y + y, x, y);
ctx.closePath();
}
// If the path is part of a compound path or doesn't have a fill or
// stroke, there is no need to continue.
if (!param.compound && (this.fillColor || this.strokeColor)) {
this.setCtxStyles(ctx);
ctx.save();
// If the path only defines a strokeColor or a fillColor,
// draw it directly with the globalAlpha set, otherwise
// we will do it later when we composite the temporary canvas.
if (!this.fillColor || !this.strokeColor)
ctx.globalAlpha = this.opacity;
if (this.fillColor) {
ctx.fillStyle = this.fillColor.getCanvasStyle(ctx);
ctx.fill();
}
if (this.strokeColor) {
ctx.strokeStyle = this.strokeColor.getCanvasStyle(ctx);
ctx.stroke();
}
ctx.restore();
}
}
2011-03-02 12:23:45 -05:00
}, new function() { // Inject methods that require scoped privates
function calculateBounds(that, includeStroke) {
// Code ported and further optimised from:
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
var segments = that._segments, first = segments[0], prev = first;
if (!first)
return null;
var min = first.point.clone(), max = min.clone();
var coords = ['x', 'y'];
function processSegment(segment) {
for (var i = 0; i < 2; i++) {
var coord = coords[i];
var v0 = prev.point[coord],
v1 = v0 + prev.handleOut[coord],
v3 = segment.point[coord],
v2 = v3 + segment.handleIn[coord];
function add(value, t) {
if (value == null) {
// Calculate bezier polynomial at t
var u = 1 - t;
value = u * u * u * v0
+ 3 * u * u * t * v1
+ 3 * u * t * t * v2
+ t * t * t * v3;
}
if (value < min[coord]) {
min[coord] = value;
} else if (value > max[coord]) {
max[coord] = value;
}
}
add(v3);
// Calculate derivative of our bezier polynomial, divided by 3.
// Dividing by 3 allows for simpler calculations of a, b, c and
// leads to the same quadratic roots below.
var a = 3 * (v1 - v2) - v0 + v3;
var b = 2 * (v0 + v2) - 4 * v1;
var c = v1 - v0;
// Solve for derivative for quadratic roots. Each good root
// (meaning a solution 0 < t < 1) is an extrema in the cubic
// polynomial and thus a potential point defining the bounds
if (a == 0) {
if (b == 0)
continue;
var t = -c / b;
// Test for good root and add to bounds if good (same below)
if (0 < t && t < 1)
add(null, t);
continue;
}
var b2ac = b * b - 4 * a * c;
if (b2ac < 0)
continue;
var sqrt = Math.sqrt(b2ac),
f = 1 / (a * -2),
t1 = (b - sqrt) * f,
t2 = (b + sqrt) * f;
if (0 < t1 && t1 < 1)
add(null, t1);
if (0 < t2 && t2 < 1)
add(null, t2);
}
prev = segment;
}
for (var i = 1, l = segments.length; i < l; i++)
processSegment(segments[i]);
if (that.closed)
processSegment(first);
return new Rectangle(min.x, min.y, max.x - min.x , max.y - min.y);
}
/**
* Solves a tri-diagonal system for one of coordinates (x or y) of first
* bezier control points.
*
* @param rhs right hand side vector.
* @return Solution vector.
*/
2011-03-02 12:23:45 -05:00
function getFirstControlPoints(rhs) {
var n = rhs.length;
var x = []; // Solution vector.
var tmp = []; // Temporary workspace.
var b = 2;
x[0] = rhs[0] / b;
// Decomposition and forward substitution.
for (var i = 1; i < n; i++) {
tmp[i] = 1 / b;
b = (i < n - 1 ? 4.0 : 2.0) - tmp[i];
x[i] = (rhs[i] - x[i - 1]) / b;
}
// Back-substitution.
for (var i = 1; i < n; i++) {
x[n - i - 1] -= tmp[n - i] * x[n - i];
}
return x;
};
var styleNames = {
strokeWidth: 'lineWidth',
strokeJoin: 'lineJoin',
strokeCap: 'lineCap',
miterLimit: 'miterLimit'
};
return {
beans: true,
/**
* The bounding rectangle of the item excluding stroke width.
*/
getBounds: function() {
return calculateBounds(this, false);
},
/**
* The bounding rectangle of the item including stroke width.
*/
getStrokeBounds: function() {
return calculateBounds(this, true);
},
/**
* The bounding rectangle of the item including handles.
*/
getControlBounds: function() {
// TODO: Implement!
},
smooth: function() {
var segments = this._segments;
// This code is based on the work by Oleg V. Polikarpotchkin,
// http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry
// It was extended to support closed paths by averaging overlapping
// beginnings and ends. The result of this approach is very close to
// Polikarpotchkin's closed curve solution, but reuses the same
// algorithm as for open paths, and is probably executing faster as
// well, so it is preferred.
var size = segments.length;
if (size <= 2)
return;
var n = size;
// Add overlapping ends for averaging handles in closed paths
var overlap;
if (this.closed) {
// Overlap up to 4 points since averaging beziers affect the 4
// neighboring points
overlap = Math.min(size, 4);
n += Math.min(size, overlap) * 2;
} else {
overlap = 0;
}
var knots = [];
for (var i = 0; i < size; i++)
knots[i + overlap] = segments[i].point;
if (this.closed) {
// If we're averaging, add the 4 last points again at the
// beginning, and the 4 first ones at the end.
for (var i = 0; i < overlap; i++) {
knots[i] = segments[i + size - overlap].point;
knots[i + size + overlap] = segments[i].point;
}
} else {
n--;
}
// Calculate first Bezier control points
// Right hand side vector
var rhs = [];
// Set right hand side X values
for (var i = 1; i < n - 1; i++)
rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x;
rhs[0] = knots[0].x + 2 * knots[1].x;
rhs[n - 1] = 3 * knots[n - 1].x;
// Get first control points X-values
var x = getFirstControlPoints(rhs);
// Set right hand side Y values
for (var i = 1; i < n - 1; i++)
rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y;
rhs[0] = knots[0].y + 2 * knots[1].y;
rhs[n - 1] = 3 * knots[n - 1].y;
// Get first control points Y-values
var y = getFirstControlPoints(rhs);
if (this.closed) {
// Do the actual averaging simply by linearly fading between the
// overlapping values.
for (var i = 0, j = size; i < overlap; i++, j++) {
var f1 = (i / overlap);
var f2 = 1 - f1;
// Beginning
x[j] = x[i] * f1 + x[j] * f2;
y[j] = y[i] * f1 + y[j] * f2;
// End
var ie = i + overlap, je = j + overlap;
x[je] = x[ie] * f2 + x[je] * f1;
y[je] = y[ie] * f2 + y[je] * f1;
}
n--;
}
var handleIn = null;
// Now set the calculated handles
for (var i = overlap; i <= n - overlap; i++) {
var segment = segments[i - overlap];
if (handleIn != null)
segment.handleIn = handleIn.subtract(segment.point);
if (i < n) {
segment.handleOut =
new Point(x[i], y[i]).subtract(segment.point);
if (i < n - 1)
handleIn = new Point(
2 * knots[i + 1].x - x[i + 1],
2 * knots[i + 1].y - y[i + 1]);
else
handleIn = new Point(
(knots[n].x + x[n - 1]) / 2,
(knots[n].y + y[n - 1]) / 2);
}
}
if (closed && handleIn != null) {
var segment = this._segments[0];
segment.handleIn = handleIn.subtract(segment.point);
}
},
setCtxStyles: function(ctx) {
for (var i in styleNames) {
var style;
if (style = this[i])
ctx[styleNames[i]] = style;
}
}
};
});