paper.js/src/path/PathItem.Boolean.js

317 lines
10 KiB
JavaScript
Raw Normal View History

/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
* Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
/*
2013-05-03 19:31:36 -04:00
* Boolean Geometric Path Operations
*
* This is mostly written for clarity and compatibility, not optimised for
* performance, and has to be tested heavily for stability.
*
* Supported
* - paperjs Path and CompoundPath objects
* - Boolean Union
* - Boolean Intersection
* - Boolean Subtraction
* - Resolving a self-intersecting Path
*
* Not supported yet
* - Boolean operations on self-intersecting Paths
* - Paths are clones of each other that ovelap exactly on top of each other!
*
* @author Harikrishnan Gopalakrishnan
* http://hkrish.com/playground/paperjs/booleanStudy.html
*/
PathItem.inject(new function() {
function splitPath(intersections, collectOthers) {
// Sort intersections by paths ids, curve index and parameter, so we
// can loop through all intersections, divide paths and never need to
// readjust indices.
intersections.sort(function(loc1, loc2) {
var path1 = loc1.getPath(),
path2 = loc2.getPath();
return path1 === path2
// We can add parameter (0 <= t <= 1) to index (a integer)
// to compare both at the same time
? (loc1.getIndex() + loc1.getParameter())
- (loc2.getIndex() + loc2.getParameter())
: path1._id - path2._id;
});
var others = collectOthers && [];
for (var i = intersections.length - 1; i >= 0; i--) {
var loc = intersections[i],
other = loc.getIntersection(),
curve = loc.divide(),
// When the curve doesn't need to be divided since t = 0, 1,
// #divide() returns null and we can use the existing segment.
segment = curve && curve.getSegment1() || loc.getSegment();
if (others)
others.push(other);
other.__segment = segment;
segment._ixPair = other;
}
return others;
}
/**
* To deal with a HTML canvas requirement where CompoundPaths' child contours
* has to be of different winding direction for correctly filling holes.
* But if some individual countours are disjoint, i.e. islands, we have to
* reorient them so that
* the holes have opposit winding direction (already handled by paperjs)
* islands has to have same winding direction (as the first child of the path)
*
* Does NOT handle selfIntersecting CompoundPaths.
*
* @param {CompoundPath} path - Input CompoundPath, Note: This path could be modified if need be.
* @return {boolean} the winding direction of the base contour(true if clockwise)
*/
function reorientCompoundPath(path) {
if (!(path instanceof CompoundPath)) {
path.closed = true;
return path.clockwise;
}
var children = path.children, len = children.length, baseWinding;
var bounds = new Array(len);
var tmparray = new Array(len);
baseWinding = children[0].clockwise;
// Omit the first path
for (i = 0; i < len; i++) {
children[i].closed = true;
bounds[i] = children[i].bounds;
tmparray[i] = 0;
}
for (i = 0; i < len; i++) {
var p1 = children[i];
for (j = 0; j < len; j++) {
var p2 = children[j];
if (i !== j && bounds[i].contains(bounds[j])) {
tmparray[j]++;
}
}
}
for (i = 1; i < len; i++) {
if (tmparray[i] % 2 === 0) {
children[i].clockwise = baseWinding;
}
}
return baseWinding;
}
function reversePath(path) {
var baseWinding;
if (path instanceof CompoundPath) {
var children = path.children, i, len;
for (i = 0, len = children.length; i < len; i++) {
children[i].reverse();
}
baseWinding = children[0].clockwise;
} else {
path.reverse();
baseWinding = path.clockwise;
}
return baseWinding;
}
function computeBoolean(path1, path2, operator, subtract, _cache) {
var _path1, _path2, path1Clockwise, path2Clockwise;
var ixs, path1Id, path2Id;
// We do not modify the operands themselves
// The result might not belong to the same type
// i.e. subtraction(A:Path, B:Path):CompoundPath etc.
_path1 = path1.clone();
_path2 = path2.clone();
_path1.style = _path2.style = null;
_path1.selected = _path2.selected = false;
path1Clockwise = reorientCompoundPath(_path1);
path2Clockwise = reorientCompoundPath(_path2);
path1Id = _path1.id;
path2Id = _path2.id;
// Calculate all the intersections
ixs = _cache && _cache.intersections || _path1.getIntersections(_path2);
// if we have a empty _cache object as an operand,
// skip calculating boolean and cache the intersections
if (_cache && !_cache.intersections)
return _cache.intersections = ixs;
splitPath(splitPath(ixs, true));
path1Id = _path1.id;
path2Id = _path2.id;
// Do operator specific calculations before we begin
if (subtract)
path2Clockwise = reversePath(_path2);
var i, j, len, path, crv;
var paths = [];
if (_path1 instanceof CompoundPath) {
paths = paths.concat(_path1.children);
} else {
paths = [ _path1 ];
}
if (_path2 instanceof CompoundPath) {
paths = paths.concat(_path2.children);
} else {
paths.push(_path2);
}
// step 1: discard invalid links according to the boolean operator
var lastNode, firstNode, nextNode, midPoint, insidePath1, insidePath2;
var thisId, thisWinding, contains;
for (i = 0, len = paths.length; i < len; i++) {
insidePath1 = insidePath2 = false;
path = paths[i];
thisId = (path.parent instanceof CompoundPath)? path.parent.id : path.id;
thisWinding = path.clockwise;
lastNode = path.lastSegment;
firstNode = path.firstSegment;
nextNode = null;
while (nextNode !== firstNode) {
nextNode = (nextNode)? nextNode.previous: lastNode;
crv = nextNode.curve;
midPoint = crv.getPoint(0.5);
if (thisId !== path1Id) {
contains = _path1.
contains(midPoint);
insidePath1 = thisWinding === path1Clockwise || subtract
? contains
: contains && !testOnCurve(_path1, midPoint);
}
if (thisId !== path2Id) {
contains = _path2.contains(midPoint);
insidePath2 = thisWinding === path2Clockwise
? contains
: contains && !testOnCurve(_path2, midPoint);
}
if (operator(thisId === path1Id, insidePath1, insidePath2)) {
crv._INVALID = true;
// markPoint(midPoint, '+');
}
}
}
// Final step: Retrieve the resulting paths from the graph
var boolResult = new CompoundPath();
var node, nuNode, nuPath, nodeList = [], handle;
for (i = 0, len = paths.length; i < len; i++) {
nodeList = nodeList.concat(paths[i].segments);
}
for (i = 0, len = nodeList.length; i < len; i++) {
node = nodeList[i];
if (node.curve._INVALID || node._visited) { continue; }
path = node.path;
thisId = (path.parent instanceof CompoundPath)? path.parent.id : path.id;
thisWinding = path.clockwise;
nuPath = new Path();
firstNode = null;
firstNode_ix = null;
if (node.previous.curve._INVALID) {
node.handleIn = (node._ixPair)?
node._ixPair.getIntersection().__segment.handleIn : [ 0, 0 ];
}
while (node && !node._visited && (node !== firstNode && node !== firstNode_ix)) {
node._visited = true;
firstNode = (firstNode)? firstNode: node;
firstNode_ix = (!firstNode_ix && firstNode._ixPair)?
firstNode._ixPair.getIntersection().__segment: firstNode_ix;
// node._ixPair is this node's intersection CurveLocation object
// node._ixPair.getIntersection() is the other CurveLocation object this node intersects with
nextNode = (node._ixPair && node.curve._INVALID)? node._ixPair.getIntersection().__segment : node;
if (node._ixPair) {
nextNode._visited = true;
nuNode = new Segment(node.point, node.handleIn, nextNode.handleOut);
nuPath.add(nuNode);
node = nextNode;
path = node.path;
thisWinding = path.clockwise;
} else {
nuPath.add(node);
}
node = node.next;
}
if (nuPath.segments.length > 1) {
// avoid stray segments and incomplete paths
if (nuPath.segments.length > 2 || !nuPath.curves[0].isLinear()) {
nuPath.closed = true;
boolResult.addChild(nuPath, true);
}
}
}
// Delete the proxies
_path1.remove();
_path2.remove();
// And then, we are done.
return boolResult.reduce();
}
function testOnCurve(path, point) {
2013-05-04 00:24:02 -04:00
var curves = path.getCurves(),
bounds = path.getBounds();
if (bounds.contains(point)) {
for (var i = 0, l = curves.length; i < l; i++) {
var curve = curves[i];
if (curve.getBounds().contains(point)
&& curve.getParameterOf(point))
return true;
}
}
2013-05-04 00:24:02 -04:00
return false;
}
// A boolean operator is a binary operator function of the form
// function(isPath1, isInPath1, isInPath2)
//
// Operators return true if a curve in the operands is to be removed,
// and they aare called for each curve segment in the graph after all the
// intersections between the operands are calculated and curves in the
// operands were split at intersections.
//
// The boolean operator return a Boolean value indicating whether to
// keep the curve or not.
// return true - discard the curve
// return false - keep the curve
return {
unite: function(path, _cache) {
return computeBoolean(this, path,
function(isPath1, isInPath1, isInPath2) {
return isInPath1 || isInPath2;
}, false, _cache);
},
intersect: function(path, _cache) {
return computeBoolean(this, path,
function(isPath1, isInPath1, isInPath2) {
return !(isInPath1 || isInPath2);
}, false, _cache);
},
subtract: function(path, _cache) {
return computeBoolean(this, path,
function(isPath1, isInPath1, isInPath2) {
return isPath1 && isInPath2 || !isPath1 && !isInPath1;
}, true, _cache);
},
// Compound boolean operators combine the basic boolean operations such
// as union, intersection, subtract etc.
// TODO: cache the split objects and find a way to properly clone them!
// a.k.a. eXclusiveOR
exclude: function(path) {
return new Group([this.subtract(path), path.subtract(this)]);
},
// Divide path1 by path2
divide: function(path) {
return new Group([this.subtract(path), this.intersect(path)]);
}
};
});