paper.js/src/path/PathItem.Boolean.js

376 lines
12 KiB
JavaScript
Raw Normal View History

/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
* Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
/*
2013-05-03 19:31:36 -04:00
* Boolean Geometric Path Operations
*
* This is mostly written for clarity and compatibility, not optimised for
* performance, and has to be tested heavily for stability.
*
* Supported
* - paperjs Path and CompoundPath objects
* - Boolean Union
* - Boolean Intersection
* - Boolean Subtraction
* - Resolving a self-intersecting Path
*
* Not supported yet
* - Boolean operations on self-intersecting Paths
* - Paths are clones of each other that ovelap exactly on top of each other!
*
* @author Harikrishnan Gopalakrishnan
* http://hkrish.com/playground/paperjs/booleanStudy.html
*/
PathItem.inject({
// A boolean operator is a binary operator function of the form
// function(isPath1, isInPath1, isInPath2)
//
// Operators return true if a curve in the operands is to be removed,
// and they aare called for each curve segment in the graph after all the
// intersections between the operands are calculated and curves in the
// operands were split at intersections.
//
// These functions should have a name ("union", "subtraction" etc. below),
// if we need to do operator specific operations on paths inside the
// computeBoolean function.
// For example: If the name of the operator is "subtraction" then we need to
// reverse the second operand. Subtraction is neither associative nor
// commutative.
//
// The boolean operator return a Boolean value indicating whether to
// keep the curve or not.
// return true - discard the curve
// return false - keep the curve
unite: function(path, _cache) {
return this._computeBoolean(this, path,
function union(isPath1, isInPath1, isInPath2) {
return isInPath1 || isInPath2;
}, _cache);
},
intersect: function(path, _cache) {
return this._computeBoolean(this, path,
function intersection(isPath1, isInPath1, isInPath2) {
return !(isInPath1 || isInPath2);
}, _cache);
},
subtract: function(path, _cache) {
return this._computeBoolean(this, path,
function subtraction(isPath1, isInPath1, isInPath2) {
return isPath1 && isInPath2 || !isPath1 && !isInPath1;
}, _cache);
},
// Compound boolean operators combine the basic boolean operations such as
// union, intersection, subtract etc.
// TODO: cache the split objects and find a way to properly clone them!
// a.k.a. eXclusiveOR
exclude: function(path) {
return new Group([this.subtract(path), path.subtract(this)]);
},
// Divide path1 by path2
divide: function(path) {
return new Group([this.subtract(path), this.intersect(path)]);
},
_splitPath: function(_ixs, other) {
// Sort function for sorting intersections in the descending order
function sortIx(a, b) {
return b.parameter - a.parameter;
}
var paths = {};
for (var i = 0, l = _ixs.length; i < l; i++) {
var ix = other ? _ixs[i].getIntersection() : _ixs[i];
if (!paths[ix.path.id])
paths[ix.path.id] = ix.path;
if (!ix.curve._ixParams)
ix.curve._ixParams = [];
ix.curve._ixParams.push({
parameter: ix.parameter,
pair: ix.getIntersection()
});
}
for (var k in paths) {
if (!paths.hasOwnProperty(k))
continue;
var path = paths[k],
lastNode = path.lastSegment,
firstNode = path.firstSegment,
nextNode = null;
while (nextNode !== firstNode) {
nextNode = (nextNode)? nextNode.previous: lastNode;
if (nextNode.curve._ixParams) {
var ixs = nextNode.curve._ixParams,
crv = nextNode.getCurve(),
isLinear = crv.isLinear(),
vals = null,
segment;
ixs.sort(sortIx);
for (var i = 0, l = ixs.length; i < l; i++) {
var ix = ixs[i];
if (!vals)
vals = crv.getValues();
if (ix.parameter === 0 || ix.parameter === 1) {
// Intersection is on an existing node: No need to
// create a new segment, we just link the
// corresponding intersections together
segment = ix.parameter === 0
? crv.segment1
: crv.segment2;
} else {
var parts = Curve.subdivide(vals, ix.parameter),
left = parts[0],
right = parts[1],
segment = new Segment(
new Point(right[0], right[1]));
if (!isLinear) {
crv.segment1.handleOut = new Point(
left[2] - left[0],
left[3] - left[1]);
crv.segment2.handleIn = new Point(
right[4] - right[6],
right[5] - right[7]);
segment.handleIn = new Point(
left[4] - left[6],
left[5] - left[7]);
segment.handleOut = new Point(
right[2] - left[6],
right[3] - left[7]);
}
path.insert(nextNode.index + 1, segment);
crv = nextNode.getCurve();
vals = left;
}
segment._ixPair = ix.pair;
segment._ixPair._segment = segment;
for (var j = i + 1; j < l; j++)
ixs[j].parameter = ixs[j].parameter / ix.parameter;
}
}
}
}
},
/**
* To deal with a HTML canvas requirement where CompoundPaths' child contours
* has to be of different winding direction for correctly filling holes.
* But if some individual countours are disjoint, i.e. islands, we have to
* reorient them so that
* the holes have opposit winding direction (already handled by paperjs)
* islands has to have same winding direction (as the first child of the path)
*
* Does NOT handle selfIntersecting CompoundPaths.
*
* @param {CompoundPath} path - Input CompoundPath, Note: This path could be modified if need be.
* @return {boolean} the winding direction of the base contour(true if clockwise)
*/
_reorientCompoundPath: function(path) {
if (!(path instanceof CompoundPath)) {
path.closed = true;
return path.clockwise;
}
var children = path.children, len = children.length, baseWinding;
var bounds = new Array(len);
var tmparray = new Array(len);
baseWinding = children[0].clockwise;
// Omit the first path
for (i = 0; i < len; i++) {
children[i].closed = true;
bounds[i] = children[i].bounds;
tmparray[i] = 0;
}
for (i = 0; i < len; i++) {
var p1 = children[i];
for (j = 0; j < len; j++) {
var p2 = children[j];
if (i !== j && bounds[i].contains(bounds[j])) {
tmparray[j]++;
}
}
}
for (i = 1; i < len; i++) {
if (tmparray[i] % 2 === 0) {
children[i].clockwise = baseWinding;
}
}
return baseWinding;
},
_reversePath: function(path) {
var baseWinding;
if (path instanceof CompoundPath) {
var children = path.children, i, len;
for (i = 0, len = children.length; i < len; i++) {
children[i].reverse();
children[i]._curves = null;
}
baseWinding = children[0].clockwise;
} else {
path.reverse();
baseWinding = path.clockwise;
path._curves = null;
}
return baseWinding;
},
_computeBoolean: function(path1, path2, operator, _splitCache) {
var _path1, _path2, path1Clockwise, path2Clockwise;
var ixs, path1Id, path2Id;
// We do not modify the operands themselves
// The result might not belong to the same type
// i.e. subtraction(A:Path, B:Path):CompoundPath etc.
_path1 = path1.clone();
_path2 = path2.clone();
_path1.style = _path2.style = null;
_path1.selected = _path2.selected = false;
path1Clockwise = this._reorientCompoundPath(_path1);
path2Clockwise = this._reorientCompoundPath(_path2);
path1Id = _path1.id;
path2Id = _path2.id;
// Calculate all the intersections
ixs = (_splitCache && _splitCache.intersections)?
_splitCache.intersections : _path1.getIntersections(_path2);
// if we have a empty _splitCache object as an operand,
// skip calculating boolean and cache the intersections
if (_splitCache && !_splitCache.intersections) {
_splitCache.intersections = ixs;
return;
}
this._splitPath(ixs, false);
this._splitPath(ixs, true);
path1Id = _path1.id;
path2Id = _path2.id;
// Do operator specific calculations before we begin
if (operator.name === "subtraction") {
path2Clockwise = this._reversePath(_path2);
}
var i, j, len, path, crv;
var paths = [];
if (_path1 instanceof CompoundPath) {
paths = paths.concat(_path1.children);
} else {
paths = [ _path1 ];
}
if (_path2 instanceof CompoundPath) {
paths = paths.concat(_path2.children);
} else {
paths.push(_path2);
}
// step 1: discard invalid links according to the boolean operator
var lastNode, firstNode, nextNode, midPoint, insidePath1, insidePath2;
var thisId, thisWinding, contains, subtractionOp = (operator.name === 'subtraction');
for (i = 0, len = paths.length; i < len; i++) {
insidePath1 = insidePath2 = false;
path = paths[i];
thisId = (path.parent instanceof CompoundPath)? path.parent.id : path.id;
thisWinding = path.clockwise;
lastNode = path.lastSegment;
firstNode = path.firstSegment;
nextNode = null;
while (nextNode !== firstNode) {
nextNode = (nextNode)? nextNode.previous: lastNode;
crv = nextNode.curve;
midPoint = crv.getPoint(0.5);
if (thisId !== path1Id) {
contains = _path1.
contains(midPoint);
insidePath1 = (thisWinding === path1Clockwise || subtractionOp)? contains :
contains && !this._testOnCurve(_path1, midPoint);
}
if (thisId !== path2Id) {
contains = _path2.contains(midPoint);
insidePath2 = (thisWinding === path2Clockwise)? contains :
contains && !this._testOnCurve(_path2, midPoint);
}
if (operator(thisId === path1Id, insidePath1, insidePath2)) {
crv._INVALID = true;
// markPoint(midPoint, '+');
}
}
}
// Final step: Retrieve the resulting paths from the graph
var boolResult = new CompoundPath();
var node, nuNode, nuPath, nodeList = [], handle;
for (i = 0, len = paths.length; i < len; i++) {
nodeList = nodeList.concat(paths[i].segments);
}
for (i = 0, len = nodeList.length; i < len; i++) {
node = nodeList[i];
if (node.curve._INVALID || node._visited) { continue; }
path = node.path;
thisId = (path.parent instanceof CompoundPath)? path.parent.id : path.id;
thisWinding = path.clockwise;
nuPath = new Path();
firstNode = null;
firstNode_ix = null;
if (node.previous.curve._INVALID) {
node.handleIn = (node._ixPair)?
node._ixPair.getIntersection()._segment.handleIn : [ 0, 0 ];
}
while (node && !node._visited && (node !== firstNode && node !== firstNode_ix)) {
node._visited = true;
firstNode = (firstNode)? firstNode: node;
firstNode_ix = (!firstNode_ix && firstNode._ixPair)?
firstNode._ixPair.getIntersection()._segment: firstNode_ix;
// node._ixPair is this node's intersection CurveLocation object
// node._ixPair.getIntersection() is the other CurveLocation object this node intersects with
nextNode = (node._ixPair && node.curve._INVALID)? node._ixPair.getIntersection()._segment : node;
if (node._ixPair) {
nextNode._visited = true;
nuNode = new Segment(node.point, node.handleIn, nextNode.handleOut);
nuPath.add(nuNode);
node = nextNode;
path = node.path;
thisWinding = path.clockwise;
} else {
nuPath.add(node);
}
node = node.next;
}
if (nuPath.segments.length > 1) {
// avoid stray segments and incomplete paths
if (nuPath.segments.length > 2 || !nuPath.curves[0].isLinear()) {
nuPath.closed = true;
boolResult.addChild(nuPath, true);
}
}
}
// Delete the proxies
_path1.remove();
_path2.remove();
// And then, we are done.
return boolResult.reduce();
},
_testOnCurve: function(path, point) {
var res = 0;
var crv = path.getCurves();
var i = 0;
var bounds = path.bounds;
if (bounds && bounds.contains(point)) {
for(i = 0; i < crv.length && !res; i++) {
var crvi = crv[i];
if (crvi.bounds.contains(point) && crvi.getParameterOf(point)) {
res = 1;
}
}
}
return res;
}
});