paper.js/src/path/Curve.js

412 lines
11 KiB
JavaScript
Raw Normal View History

2011-03-06 19:50:44 -05:00
/*
* Paper.js
*
* This file is part of Paper.js, a JavaScript Vector Graphics Library,
* based on Scriptographer.org and designed to be largely API compatible.
2011-03-07 20:41:50 -05:00
* http://paperjs.org/
2011-03-06 19:50:44 -05:00
* http://scriptographer.org/
*
2011-03-07 20:41:50 -05:00
* Distributed under the MIT license. See LICENSE file for details.
*
2011-03-06 19:50:44 -05:00
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
2011-03-07 20:41:50 -05:00
* All rights reserved.
2011-03-06 19:50:44 -05:00
*/
var Curve = this.Curve = Base.extend({
beans: true,
2011-03-06 07:24:15 -05:00
initialize: function(arg0, arg1, arg2, arg3) {
if (arguments.length == 0) {
this._segment1 = new Segment();
this._segment2 = new Segment();
} else if (arguments.length == 1) {
// TODO: If beans are not activated, this won't copy from
// an existing segment. OK?
this._segment1 = new Segment(arg0.segment1);
this._segment2 = new Segment(arg0.segment2);
} else if (arguments.length == 2) {
if (arg0 instanceof Path) {
this._path = arg0;
this._index1 = arg1;
this._updateSegments();
} else {
this._segment1 = new Segment(arg0);
this._segment2 = new Segment(arg1);
}
} else if (arguments.length == 4) {
this._segment1 = new Segment(arg0, null, arg1);
this._segment2 = new Segment(arg3, arg2, null);
}
},
_updateSegments: function() {
if (this._path) {
this._index2 = this._index1 + 1;
// A closing curve?
var segments = this._path._segments;
if (this._index2 >= segments.length)
this._index2 = 0;
this._segment1 = segments[this._index1];
this._segment2 = segments[this._index2];
}
},
/**
* The first anchor point of the curve.
*/
getPoint1: function() {
return this._segment1._point;
},
setPoint1: function() {
var point = Point.read(arguments);
this._segment1._point.set(point.x, point.y);
},
/**
* The second anchor point of the curve.
*/
getPoint2: function() {
return this._segment2._point;
},
setPoint2: function() {
var point = Point.read(arguments);
this._segment2._point.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the first anchor point.
*/
getHandle1: function() {
return this._segment1._handleOut;
},
setHandle1: function() {
var point = Point.read(arguments);
this._segment1._handleOut.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the second anchor point.
*/
getHandle2: function() {
return this._segment2._handleIn;
},
setHandle2: function() {
var point = Point.read(arguments);
this._segment2._handleIn.set(point.x, point.y);
},
/**
* The first segment of the curve.
*/
getSegment1: function() {
return this._segment1;
},
/**
* The second segment of the curve.
*/
getSegment2: function() {
return this._segment2;
},
2011-03-06 08:26:09 -05:00
getPath: function() {
return this._path;
},
getIndex: function() {
return this._index1;
},
_setIndex: function(index) {
this._index1 = index;
this._updateSegments();
},
getNext: function() {
var curves = this._path && this._path._curves;
// TODO: Add cyclic looping when closed back to Scriptographer
return curves && (curves[this._index1 + 1]
|| this._path.closed && curves[0]) || null;
},
getPrevious: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._index1 - 1]
|| this._path.closed && curves[curves.length - 1]) || null;
},
getCurveValues: function() {
var p1 = this._segment1._point,
h1 = this._segment1._handleOut,
h2 = this._segment2._handleIn,
p2 = this._segment2._point;
return [
p1.x, p1.y,
p1.x + h1.x, p1.y + h1.y,
p2.x + h2.x, p2.y + h2.y,
p2.x, p2.y
];
},
// TODO: Port back to Scriptographer, optionally suppporting from, to
// TODO: Replaces getPartLength(fromParameter, toParameter)?
getLength: function(/* from, to */) {
// Hide parameters from Bootstrap so it injects bean too
2011-03-06 21:38:07 -05:00
var args = this.getCurveValues();
if (arguments.length > 0)
args.push(arguments[0], arguments[1]);
2011-03-06 21:38:07 -05:00
return Curve.getLength.apply(Curve, args);
},
/**
* Checks if this curve is linear, meaning it does not define any curve
* handle.
* @return {@true if the curve is linear}
*/
isLinear: function() {
return this._segment1._handleOut.isZero()
&& this._segment2._handleIn.isZero();
},
2011-03-07 06:58:41 -05:00
// TODO: Port support for start parameter back to Scriptographer
getParameter: function(length, start) {
2011-03-06 21:38:07 -05:00
var args = this.getCurveValues();
2011-03-07 06:58:41 -05:00
args.push(length, start !== undefined ? start : length < 0 ? 1 : 0);
2011-03-06 21:38:07 -05:00
return Curve.getParameter.apply(Curve, args);
},
// TODO: getParameter(point, precision)
// TODO: getLocation
// TODO: getIntersections
// TODO: adjustThroughPoint
transform: function(matrix) {
return new Curve(
matrix.transform(this._segment1._point),
matrix.transform(this._segment1._handleOut),
matrix.transform(this._segment2._handleIn),
matrix.transform(this._segment2._point));
},
reverse: function() {
return new Curve(this._segment2.reverse(), this._segment1.reverse());
},
// TODO: divide
// TODO: split
clone: function() {
return new Curve(this._segment1, this._segment2);
},
toString: function() {
return '{ point1: ' + this._segment1._point
+ (!this._segment1._handleOut.isZero()
? ', handle1: ' + this._segment1._handleOut : '')
+ (this._segment2._handleIn.isZero()
? ', handle2: ' + this._segment2._handleIn : '')
+ ', point2: ' + this._segment2._point
+ ' }';
}
}, new function() {
2011-03-07 11:51:12 -05:00
function evaluate(that, t, type) {
// Calculate the polynomial coefficients. caution: handles are relative
// to points
2011-03-06 08:07:49 -05:00
var point1 = that._segment1._point,
handle1 = that._segment1._handleOut,
handle2 = that._segment2._handleIn,
point2 = that._segment2._point,
x, y;
// Handle special case at beginning / end of curve
// TODO: Port back to Scriptographer, so 0.000000000001 won't be
// required anymore
if (t == 0 || t == 1) {
var point;
switch (type) {
case 0: // point
point = t == 0 ? point1 : point2;
break;
case 1: // tangent
case 2: // normal
point = t == 0
? handle1.isZero()
? handle2.isZero()
? point2.subtract(point1)
: point2.add(handle2).subtract(point1)
: handle1
: handle2.isZero() // t == 1
? handle1.isZero()
? point1.subtract(point2)
: point1.add(handle1).subtract(point2)
: handle2;
break;
}
x = point.x;
y = point.y;
} else {
var dx = point2.x - point1.x,
cx = 3 * handle1.x,
bx = 3 * (dx + handle2.x - handle1.x) - cx,
ax = dx - cx - bx,
dy = point2.y - point1.y,
cy = 3 * handle1.y,
by = 3 * (dy + handle2.y - handle1.y) - cy,
ay = dy - cy - by;
switch (type) {
case 0: // point
x = ((ax * t + bx) * t + cx) * t + point1.x;
y = ((ay * t + by) * t + cy) * t + point1.y;
break;
case 1: // tangent
case 2: // normal
// Simply use the derivation of the bezier function for both
// the x and y coordinates:
x = (3 * ax * t + 2 * bx) * t + cx,
y = (3 * ay * t + 2 * by) * t + cy;
2011-03-07 11:51:12 -05:00
break;
}
}
// The normal is simply the rotated tangent:
// TODO: Rotate normals the other way in Scriptographer too?
// (Depending on orientation, I guess?)
return type == 2 ? new Point(y, -x) : new Point(x, y);
}
function getLengthIntegrand(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) {
// Calculate the coefficients of a Bezier derivative.
var ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
bx = 6 * (p1x + c2x) - 12 * c1x,
cx = 3 * (c1x - p1x),
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
by = 6 * (p1y + c2y) - 12 * c1y,
cy = 3 * (c1y - p1y);
return function(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
}
}
return {
getPoint: function(parameter) {
return evaluate(this, parameter, 0);
},
getTangent: function(parameter) {
return evaluate(this, parameter, 1);
},
getNormal: function(parameter) {
return evaluate(this, parameter, 2);
},
statics: {
getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, a, b) {
2011-03-07 06:52:04 -05:00
if (a === undefined)
a = 0;
2011-03-07 06:52:04 -05:00
if (b === undefined)
b = 1;
if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) {
// Straight line
2011-03-06 21:33:36 -05:00
var dx = p2x - p1x,
dy = p2y - p1y;
return (b - a) * Math.sqrt(dx * dx + dy * dy);
}
var ds = getLengthIntegrand(
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y);
return Numerical.integrate(ds, a, b, 8);
},
getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y,
2011-03-07 06:58:41 -05:00
length, start) {
if (length == 0) {
2011-03-07 06:58:41 -05:00
return start;
}
if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) {
// Straight line, calculate directly
2011-03-06 21:28:49 -05:00
// t = length / lineLength:
var dx = p2x - p1x,
dy = p2y - p1y;
2011-03-07 06:58:41 -05:00
return Math.max(Math.min(start
+ length / Math.sqrt(dx * dx + dy * dy), 0, 1));
}
2011-03-06 21:38:07 -05:00
// Let's use the Van WijngaardenDekkerBrent Method to find
// solutions more reliably than with False Position Method.
// The precision of 5 iterations seems enough for this
2011-03-07 06:51:01 -05:00
var forward = length > 0,
// Use integrand to calculate both range length and part
// lengths in f(t) below.
ds = getLengthIntegrand(
2011-03-07 06:51:01 -05:00
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y),
a, b, f;
// See if we're going forward or backward, and handle cases
// differently
if (forward) { // Normal way
2011-03-07 06:58:41 -05:00
a = start;
b = 1;
2011-03-07 06:51:01 -05:00
// We're moving b to the right to find root for length
f = function(t) {
return length - Numerical.integrate(ds, a, t, 5);
}
} else { // Going backwards
a = 0;
2011-03-07 06:58:41 -05:00
b = start;
length = -length;
2011-03-07 06:51:01 -05:00
// We're moving a to the left to find root for length
f = function(t) {
return length - Numerical.integrate(ds, t, b, 5);
}
}
var rangeLength = Numerical.integrate(ds, a, b, 8);
if (length >= rangeLength)
return forward ? b : a;
// Use length / rangeLength for an initial guess for t, to
// bring us closer:
var guess = length / rangeLength;
return Numerical.findRoot(f,
forward ? a : b - guess, // a
forward ? a + guess : b, // b
16, Numerical.TOLERANCE);
},
subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
var u = 1 - t,
// Interpolate from 4 to 3 points
p3x = u * p1x + t * c1x,
p3y = u * p1y + t * c1y,
p4x = u * c1x + t * c2x,
p4y = u * c1y + t * c2y,
p5x = u * c2x + t * p2x,
p5y = u * c2y + t * p2y,
// Interpolate from 3 to 2 points
p6x = u * p3x + t * p4x,
p6y = u * p3y + t * p4y,
p7x = u * p4x + t * p5x,
p7y = u * p4y + t * p5y,
// Interpolate from 2 points to 1 point
p8x = u * p6x + t * p7x,
p8y = u * p6y + t * p7y;
2011-03-06 21:38:07 -05:00
// We now have all the values we need to build the subcurves:
return [
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
];
}
}
};
});