paper.js/src/util/Numerical.js
2013-06-13 15:53:28 -07:00

206 lines
8.6 KiB
JavaScript

/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
* Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
var Numerical = new function() {
// Lookup tables for abscissas and weights with values for n = 2 .. 16.
// As values are symetric, only store half of them and addapt algorithm
// to factor in symetry.
var abscissas = [
[ 0.5773502691896257645091488],
[0,0.7745966692414833770358531],
[ 0.3399810435848562648026658,0.8611363115940525752239465],
[0,0.5384693101056830910363144,0.9061798459386639927976269],
[ 0.2386191860831969086305017,0.6612093864662645136613996,0.9324695142031520278123016],
[0,0.4058451513773971669066064,0.7415311855993944398638648,0.9491079123427585245261897],
[ 0.1834346424956498049394761,0.5255324099163289858177390,0.7966664774136267395915539,0.9602898564975362316835609],
[0,0.3242534234038089290385380,0.6133714327005903973087020,0.8360311073266357942994298,0.9681602395076260898355762],
[ 0.1488743389816312108848260,0.4333953941292471907992659,0.6794095682990244062343274,0.8650633666889845107320967,0.9739065285171717200779640],
[0,0.2695431559523449723315320,0.5190961292068118159257257,0.7301520055740493240934163,0.8870625997680952990751578,0.9782286581460569928039380],
[ 0.1252334085114689154724414,0.3678314989981801937526915,0.5873179542866174472967024,0.7699026741943046870368938,0.9041172563704748566784659,0.9815606342467192506905491],
[0,0.2304583159551347940655281,0.4484927510364468528779129,0.6423493394403402206439846,0.8015780907333099127942065,0.9175983992229779652065478,0.9841830547185881494728294],
[ 0.1080549487073436620662447,0.3191123689278897604356718,0.5152486363581540919652907,0.6872929048116854701480198,0.8272013150697649931897947,0.9284348836635735173363911,0.9862838086968123388415973],
[0,0.2011940939974345223006283,0.3941513470775633698972074,0.5709721726085388475372267,0.7244177313601700474161861,0.8482065834104272162006483,0.9372733924007059043077589,0.9879925180204854284895657],
[ 0.0950125098376374401853193,0.2816035507792589132304605,0.4580167776572273863424194,0.6178762444026437484466718,0.7554044083550030338951012,0.8656312023878317438804679,0.9445750230732325760779884,0.9894009349916499325961542]
];
var weights = [
[1],
[0.8888888888888888888888889,0.5555555555555555555555556],
[0.6521451548625461426269361,0.3478548451374538573730639],
[0.5688888888888888888888889,0.4786286704993664680412915,0.2369268850561890875142640],
[0.4679139345726910473898703,0.3607615730481386075698335,0.1713244923791703450402961],
[0.4179591836734693877551020,0.3818300505051189449503698,0.2797053914892766679014678,0.1294849661688696932706114],
[0.3626837833783619829651504,0.3137066458778872873379622,0.2223810344533744705443560,0.1012285362903762591525314],
[0.3302393550012597631645251,0.3123470770400028400686304,0.2606106964029354623187429,0.1806481606948574040584720,0.0812743883615744119718922],
[0.2955242247147528701738930,0.2692667193099963550912269,0.2190863625159820439955349,0.1494513491505805931457763,0.0666713443086881375935688],
[0.2729250867779006307144835,0.2628045445102466621806889,0.2331937645919904799185237,0.1862902109277342514260976,0.1255803694649046246346943,0.0556685671161736664827537],
[0.2491470458134027850005624,0.2334925365383548087608499,0.2031674267230659217490645,0.1600783285433462263346525,0.1069393259953184309602547,0.0471753363865118271946160],
[0.2325515532308739101945895,0.2262831802628972384120902,0.2078160475368885023125232,0.1781459807619457382800467,0.1388735102197872384636018,0.0921214998377284479144218,0.0404840047653158795200216],
[0.2152638534631577901958764,0.2051984637212956039659241,0.1855383974779378137417166,0.1572031671581935345696019,0.1215185706879031846894148,0.0801580871597602098056333,0.0351194603317518630318329],
[0.2025782419255612728806202,0.1984314853271115764561183,0.1861610000155622110268006,0.1662692058169939335532009,0.1395706779261543144478048,0.1071592204671719350118695,0.0703660474881081247092674,0.0307532419961172683546284],
[0.1894506104550684962853967,0.1826034150449235888667637,0.1691565193950025381893121,0.1495959888165767320815017,0.1246289712555338720524763,0.0951585116824927848099251,0.0622535239386478928628438,0.0271524594117540948517806]
];
// Math short-cuts for often used methods and values
var abs = Math.abs,
sqrt = Math.sqrt,
pow = Math.pow,
cos = Math.cos,
PI = Math.PI;
return {
TOLERANCE: 10e-6,
// Precision when comparing against 0
EPSILON: 10e-12,
// Kappa, see: http://www.whizkidtech.redprince.net/bezier/circle/kappa/
KAPPA: 4 * (sqrt(2) - 1) / 3,
/**
* Check if the value is 0, within a tolerance defined by
* Numerical.EPSILON.
*/
isZero: function(val) {
return abs(val) <= this.EPSILON;
},
/**
* Gauss-Legendre Numerical Integration.
*/
integrate: function(f, a, b, n) {
var x = abscissas[n - 2],
w = weights[n - 2],
A = 0.5 * (b - a),
B = A + a,
i = 0,
m = (n + 1) >> 1,
sum = n & 1 ? w[i++] * f(B) : 0; // Handle odd n
while (i < m) {
var Ax = A * x[i];
sum += w[i++] * (f(B + Ax) + f(B - Ax));
}
return A * sum;
},
/**
* Root finding using Newton-Raphson Method combined with Bisection.
*/
findRoot: function(f, df, x, a, b, n, tolerance) {
for (var i = 0; i < n; i++) {
var fx = f(x),
dx = fx / df(x);
// See if we can trust the Newton-Raphson result. If not we use
// bisection to find another candiate for Newton's method.
if (abs(dx) < tolerance)
return x;
// Generate a candidate for Newton's method.
var nx = x - dx;
// Update the root-bounding interval and test for containment of
// the candidate. If candidate is outside the root-bounding
// interval, use bisection instead.
// There is no need to compare to lower / upper because the
// tangent line has positive slope, guaranteeing that the x-axis
// intercept is larger than lower / smaller than upper.
if (fx > 0) {
b = x;
x = nx <= a ? 0.5 * (a + b) : nx;
} else {
a = x;
x = nx >= b ? 0.5 * (a + b) : nx;
}
}
},
/**
* Solves the quadratic polynomial with coefficients a, b, c for roots
* (zero crossings) and and returns the solutions in an array.
*
* a*x^2 + b*x + c = 0
*/
solveQuadratic: function(a, b, c, roots) {
// Code ported over and adapted from Uintah library (MIT license).
var epsilon = this.EPSILON;
// If a is 0, equation is actually linear, return 0 or 1 easy roots.
if (abs(a) < epsilon) {
if (abs(b) >= epsilon) {
roots[0] = -c / b;
return 1;
}
// If all the coefficients are 0, we have infinite solutions!
return abs(c) < epsilon ? -1 : 0; // Infinite or 0 solutions
}
var q = b * b - 4 * a * c;
if (q < 0)
return 0; // 0 solutions
q = sqrt(q);
a *= 2; // Prepare division by (2 * a)
var n = 0;
roots[n++] = (-b - q) / a;
if (q > 0)
roots[n++] = (-b + q) / a;
return n; // 1 or 2 solutions
},
/**
* Solves the cubic polynomial with coefficients a, b, c, d for roots
* (zero crossings) and and returns the solutions in an array.
*
* a*x^3 + b*x^2 + c*x + d = 0
*/
solveCubic: function(a, b, c, d, roots) {
// Code ported over and adapted from Uintah library (MIT license).
var epsilon = this.EPSILON;
// If a is 0, equation is actually quadratic.
if (abs(a) < epsilon)
return Numerical.solveQuadratic(b, c, d, roots);
// Normalize to form: x^3 + b x^2 + c x + d = 0:
b /= a;
c /= a;
d /= a;
// Compute discriminants
var bb = b * b,
p = (bb - 3 * c) / 9,
q = (2 * bb * b - 9 * b * c + 27 * d) / 54,
// Use Cardano's formula
ppp = p * p * p,
D = q * q - ppp;
// Substitute x = y - b/3 to eliminate quadric term: x^3 +px + q = 0
b /= 3;
if (abs(D) < epsilon) {
if (abs(q) < epsilon) { // One triple solution.
roots[0] = - b;
return 1;
}
// One single and one double solution.
var sqp = sqrt(p),
snq = q > 0 ? 1 : -1;
roots[0] = -snq * 2 * sqp - b;
roots[1] = snq * sqp - b;
return 2;
}
if (D < 0) { // Casus irreducibilis: three real solutions
var sqp = sqrt(p),
phi = Math.acos(q / (sqp * sqp * sqp)) / 3,
t = -2 * sqp,
o = 2 * PI / 3;
roots[0] = t * cos(phi) - b;
roots[1] = t * cos(phi + o) - b;
roots[2] = t * cos(phi - o) - b;
return 3;
}
// One real solution
var A = (q > 0 ? -1 : 1) * pow(abs(q) + sqrt(D), 1 / 3);
roots[0] = A + p / A - b;
return 1;
}
};
};