mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-22 15:30:50 -05:00
424 lines
15 KiB
JavaScript
424 lines
15 KiB
JavaScript
new function() {
|
|
|
|
var MAX_RECURSION = 20;
|
|
var MAX_ITERATION = 20;
|
|
|
|
/**
|
|
* This method is analogous to paperjs#PathItem.getIntersections, but calls
|
|
* Curve.getIntersections2 instead.
|
|
*/
|
|
PathItem.prototype.getIntersections2 = function(path) {
|
|
// First check the bounds of the two paths. If they don't intersect,
|
|
// we don't need to iterate through their curves.
|
|
if (!this.getBounds().touches(path.getBounds()))
|
|
return [];
|
|
var locations = [],
|
|
curves1 = this.getCurves(),
|
|
curves2 = path.getCurves(),
|
|
length2 = curves2.length,
|
|
values2 = [];
|
|
for (var i = 0; i < length2; i++)
|
|
values2[i] = curves2[i].getValues();
|
|
for (var i = 0, l = curves1.length; i < l; i++) {
|
|
var curve1 = curves1[i],
|
|
values1 = curve1.getValues();
|
|
for (var j = 0; j < length2; j++)
|
|
Curve.getIntersections2(values1, values2[j], curve1, curves2[j],
|
|
locations);
|
|
}
|
|
return locations;
|
|
};
|
|
|
|
/**
|
|
* This method is analogous to paperjs#Curve.getIntersections
|
|
*/
|
|
Curve.getIntersections2 = function(v1, v2, curve1, curve2, locations) {
|
|
var linear1 = Curve.isLinear(v1),
|
|
linear2 = Curve.isLinear(v2);
|
|
// Determine the correct intersection method based on values of linear1 & 2:
|
|
(linear1 && linear2
|
|
? getLineLineIntersection
|
|
: linear1 || linear2
|
|
? getCurveLineIntersections
|
|
: getCurveIntersections)(v1, v2, curve1, curve2, locations);
|
|
return locations;
|
|
};
|
|
|
|
function addLocation(locations, curve1, parameter, point, curve2) {
|
|
// Avoid duplicates when hitting segments (closed paths too)
|
|
var first = locations[0],
|
|
last = locations[locations.length - 1];
|
|
if ((!first || !point.equals(first._point))
|
|
&& (!last || !point.equals(last._point)))
|
|
locations.push(new CurveLocation(curve1, parameter, point, curve2));
|
|
}
|
|
|
|
function getCurveIntersections(v1, v2, curve1, curve2, locations,
|
|
range1, range2, recursion) {
|
|
// NOTE: range1 and range1 are only used for recusion
|
|
recursion = (recursion || 0) + 1;
|
|
// Avoid endless recursion.
|
|
// Perhaps we should fall back to a more expensive method after this, but
|
|
// so far endless recursion happens only when there is no real intersection
|
|
// and the infinite fatline continue to intersect with the other curve
|
|
// outside its bounds!
|
|
if (recursion > MAX_RECURSION)
|
|
return;
|
|
// Set up the parameter ranges.
|
|
range1 = range1 || [ 0, 1 ];
|
|
range2 = range2 || [ 0, 1 ];
|
|
// Get the clipped parts from the original curve, to avoid cumulative errors
|
|
var part1 = Curve.getPart(v1, range1[0], range1[1]),
|
|
part2 = Curve.getPart(v2, range2[0], range2[1]),
|
|
iteration = 0;
|
|
// markCurve(part1, '#f0f', true);
|
|
// markCurve(part2, '#0ff', false);
|
|
// Loop until both parameter range converge. We have to handle the
|
|
// degenerate case seperately, where fat-line clipping can become
|
|
// numerically unstable when one of the curves has converged to a point and
|
|
// the other hasn't.
|
|
while (iteration++ < MAX_ITERATION
|
|
&& (Math.abs(range1[1] - range1[0]) > /*#=*/ Numerical.TOLERANCE
|
|
|| Math.abs(range2[1] - range2[0]) > /*#=*/ Numerical.TOLERANCE)) {
|
|
// First we clip v2 with v1's fat-line
|
|
var range,
|
|
intersects1 = clipFatLine(part1, part2, range = range2.slice()),
|
|
intersects2 = 0;
|
|
// Stop if there are no possible intersections
|
|
if (intersects1 === 0)
|
|
break;
|
|
if (intersects1 > 0) {
|
|
// Get the clipped parts from the original v2, to avoid cumulative
|
|
// errors ...and reuse some objects.
|
|
range2 = range;
|
|
part2 = Curve.getPart(v2, range2[0], range2[1]);
|
|
// markCurve(part2, '#0ff', false);
|
|
// Next we clip v1 with nuv2's fat-line
|
|
intersects2 = clipFatLine(part2, part1, range = range1.slice());
|
|
// Stop if there are no possible intersections
|
|
if (intersects2 === 0)
|
|
break;
|
|
if (intersects1 > 0) {
|
|
// Get the clipped parts from the original v2, to avoid
|
|
// cumulative errors
|
|
range1 = range;
|
|
part1 = Curve.getPart(v1, range1[0], range1[1]);
|
|
}
|
|
// markCurve(part1, '#f0f', true);
|
|
}
|
|
// Get the clipped parts from the original v1
|
|
// Check if there could be multiple intersections
|
|
if (intersects1 < 0 || intersects2 < 0) {
|
|
// Subdivide the curve which has converged the least from the
|
|
// original range [0,1], which would be the curve with the largest
|
|
// parameter range after clipping
|
|
if (range1[1] - range1[0] > range2[1] - range2[0]) {
|
|
// subdivide v1 and recurse
|
|
var t = (range1[0] + range1[1]) / 2;
|
|
getCurveIntersections(v1, v2, curve1, curve2, locations,
|
|
[ range1[0], t ], range2, recursion);
|
|
getCurveIntersections(v1, v2, curve1, curve2, locations,
|
|
[ t, range1[1] ], range2, recursion);
|
|
break;
|
|
} else {
|
|
// subdivide v2 and recurse
|
|
var t = (range2[0] + range2[1]) / 2;
|
|
getCurveIntersections(v1, v2, curve1, curve2, locations, range1,
|
|
[ range2[0], t ], recursion);
|
|
getCurveIntersections(v1, v2, curve1, curve2, locations, range1,
|
|
[ t, range2[1] ], recursion);
|
|
break;
|
|
}
|
|
}
|
|
// We need to bailout of clipping and try a numerically stable method if
|
|
// any of the following are true.
|
|
// 1. One of the parameter ranges is converged to a point.
|
|
// 2. Both of the parameter ranges have converged reasonably well
|
|
// (according to Numerical.TOLERANCE).
|
|
// 3. One of the parameter range is converged enough so that it is
|
|
// *flat enough* to calculate line curve intersection implicitly.
|
|
//
|
|
// Check if one of the parameter range has converged completely to a
|
|
// point. Now things could get only worse if we iterate more for the
|
|
// other curve to converge if it hasn't yet happened so.
|
|
var converged1 = Math.abs(range1[1] - range1[0]) < /*#=*/ Numerical.TOLERANCE,
|
|
converged2 = Math.abs(range2[1] - range2[0]) < /*#=*/ Numerical.TOLERANCE;
|
|
if (converged1 || converged2) {
|
|
addLocation(locations, curve1, null, converged1
|
|
? curve1.getPointAt(range1[0], true)
|
|
: curve2.getPointAt(range2[0], true), curve2);
|
|
break;
|
|
}
|
|
// see if either or both of the curves are flat enough to be treated
|
|
// as lines.
|
|
var flat1 = Curve.isFlatEnough(part1, /*#=*/ Numerical.TOLERANCE),
|
|
flat2 = Curve.isFlatEnough(part2, /*#=*/ Numerical.TOLERANCE);
|
|
if (flat1 || flat2) {
|
|
(flat1 && flat2
|
|
? getLineLineIntersection
|
|
// Use curve line intersection method while specifying
|
|
// which curve to be treated as line
|
|
: getCurveLineIntersections)(part1, part2,
|
|
curve1, curve2, locations, flat1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Clip curve V2 with fat-line of v1
|
|
* @param {Array} v1 section of the first curve, for which we will make a
|
|
* fat-line
|
|
* @param {Array} v2 section of the second curve; we will clip this curve with
|
|
* the fat-line of v1
|
|
* @param {Array} range2 the parameter range of v2
|
|
* @return {Number} 0: no Intersection, 1: one intersection, -1: more than one
|
|
* ntersection
|
|
*/
|
|
function clipFatLine(v1, v2, range2) {
|
|
// P = first curve, Q = second curve
|
|
var p0x = v1[0], p0y = v1[1], p1x = v1[2], p1y = v1[3],
|
|
p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7],
|
|
q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3],
|
|
q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7],
|
|
// Calculate the fat-line L for P is the baseline l and two
|
|
// offsets which completely encloses the curve P.
|
|
d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0,
|
|
d2 = getSignedDistance(p0x, p0y, p3x, p3y, p2x, p2y) || 0,
|
|
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
|
|
dmin = factor * Math.min(0, d1, d2),
|
|
dmax = factor * Math.max(0, d1, d2),
|
|
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
|
|
// distance of Q from the baseline l of the fat-line, ti is equally
|
|
// spaced in [0, 1]
|
|
dq0 = getSignedDistance(p0x, p0y, p3x, p3y, q0x, q0y),
|
|
dq1 = getSignedDistance(p0x, p0y, p3x, p3y, q1x, q1y),
|
|
dq2 = getSignedDistance(p0x, p0y, p3x, p3y, q2x, q2y),
|
|
dq3 = getSignedDistance(p0x, p0y, p3x, p3y, q3x, q3y),
|
|
// Find the minimum and maximum distances from l, this is useful for
|
|
// checking whether the curves intersect with each other or not.
|
|
mindist = Math.min(dq0, dq1, dq2, dq3),
|
|
maxdist = Math.max(dq0, dq1, dq2, dq3);
|
|
// If the fatlines don't overlap, we have no intersections!
|
|
if (dmin > maxdist || dmax < mindist)
|
|
return 0;
|
|
var Dt = getConvexHull(dq0, dq1, dq2, dq3),
|
|
tmp;
|
|
if (dq3 < dq0) {
|
|
tmp = dmin;
|
|
dmin = dmax;
|
|
dmax = tmp;
|
|
}
|
|
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
|
|
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
|
|
// for the coorresponding t values (tmin, tmax): Portions of curve v2 before
|
|
// tmin and after tmax can safely be clipped away
|
|
var tmaxdmin = -Infinity,
|
|
tmin = Infinity,
|
|
tmax = -Infinity;
|
|
for (var i = 0, l = Dt.length; i < l; i++) {
|
|
var Dtl = Dt[i],
|
|
dtlx1 = Dtl[0],
|
|
dtly1 = Dtl[1],
|
|
dtlx2 = Dtl[2],
|
|
dtly2 = Dtl[3];
|
|
if (dtly2 < dtly1) {
|
|
tmp = dtly2;
|
|
dtly2 = dtly1;
|
|
dtly1 = tmp;
|
|
tmp = dtlx2;
|
|
dtlx2 = dtlx1;
|
|
dtlx1 = tmp;
|
|
}
|
|
// We know that (dtlx2 - dtlx1) is never 0
|
|
var inv = (dtly2 - dtly1) / (dtlx2 - dtlx1);
|
|
if (dmin >= dtly1 && dmin <= dtly2) {
|
|
var ixdx = dtlx1 + (dmin - dtly1) / inv;
|
|
if (ixdx < tmin)
|
|
tmin = ixdx;
|
|
if (ixdx > tmaxdmin)
|
|
tmaxdmin = ixdx;
|
|
}
|
|
if (dmax >= dtly1 && dmax <= dtly2) {
|
|
var ixdx = dtlx1 + (dmax - dtly1) / inv;
|
|
if (ixdx > tmax)
|
|
tmax = ixdx;
|
|
if (ixdx < tmin)
|
|
tmin = 0;
|
|
}
|
|
}
|
|
// Return the parameter values for v2 for which we can be sure that the
|
|
// intersection with v1 lies within.
|
|
if (tmin !== Infinity && tmax !== -Infinity) {
|
|
var mindmin = Math.min(dmin, dmax),
|
|
mindmax = Math.max(dmin, dmax);
|
|
if (dq3 > mindmin && dq3 < mindmax)
|
|
tmax = 1;
|
|
if (dq0 > mindmin && dq0 < mindmax)
|
|
tmin = 0;
|
|
if (tmaxdmin > tmax)
|
|
tmax = 1;
|
|
// tmin and tmax are within the range (0, 1). We need to project it to
|
|
// the original parameter range for v2.
|
|
var v2tmin = range2[0],
|
|
tdiff = range2[1] - v2tmin;
|
|
range2[0] = v2tmin + tmin * tdiff;
|
|
range2[1] = v2tmin + tmax * tdiff;
|
|
// If the new parameter range fails to converge by atleast 20% of the
|
|
// original range, possibly we have multiple intersections. We need to
|
|
// subdivide one of the curves.
|
|
if ((tdiff - (range2[1] - range2[0])) / tdiff >= 0.2)
|
|
return 1;
|
|
}
|
|
// TODO: Try checking with a perpendicular fatline to see if the curves
|
|
// overlap if it is any faster than this
|
|
if (Curve.getBounds(v1).touches(Curve.getBounds(v2)))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
|
|
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
|
|
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
|
|
* curve are already sorted in the X axis in the increasing order. Calculating
|
|
* convex-hull is much easier than a set of arbitrary points.
|
|
*/
|
|
function getConvexHull(dq0, dq1, dq2, dq3) {
|
|
var distq1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
|
|
distq2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2);
|
|
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line
|
|
// [0,dq0, 1,dq3]
|
|
if (distq1 * distq2 < 0) {
|
|
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]. The hull is a
|
|
// quadrilateral and line [0, q0, 1, q3] is NOT part of the hull so we
|
|
// are pretty much done here.
|
|
return [
|
|
[ 0, dq0, 1 / 3, dq1 ],
|
|
[ 1 / 3, dq1, 1, dq3 ],
|
|
[ 2 / 3, dq2, 0, dq0 ],
|
|
[ 1, dq3, 2 / 3, dq2 ]
|
|
];
|
|
}
|
|
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]. The hull can be
|
|
// a triangle or a quadrilateral and line [0, q0, 1, q3] is part of the
|
|
// hull. Check if the hull is a triangle or a quadrilateral.
|
|
var dqMaxX, dqMaxY, vqa1a2X, vqa1a2Y, vqa1MaxX, vqa1MaxY, vqa1MinX, vqa1MinY;
|
|
if (Math.abs(distq1) > Math.abs(distq2)) {
|
|
dqMaxX = 1 / 3;
|
|
dqMaxY = dq1;
|
|
// apex is dq3 and the other apex point is dq0 vector
|
|
// dqapex->dqapex2 or base vector which is already part of the hull.
|
|
vqa1a2X = 1;
|
|
vqa1a2Y = dq3 - dq0;
|
|
// vector dqapex->dqMax
|
|
vqa1MaxX = 2 / 3;
|
|
vqa1MaxY = dq3 - dq1;
|
|
// vector dqapex->dqmin
|
|
vqa1MinX = 1 / 3;
|
|
vqa1MinY = dq3 - dq2;
|
|
} else {
|
|
dqMaxX = 2 / 3;
|
|
dqMaxY = dq2;
|
|
// apex is dq0 in this case, and the other apex point is dq3 vector
|
|
// dqapex->dqapex2 or base vector which is already part of the hull.
|
|
vqa1a2X = -1;
|
|
vqa1a2Y = dq0 - dq3;
|
|
// vector dqapex->dqMax
|
|
vqa1MaxX = -2 / 3;
|
|
vqa1MaxY = dq0 - dq2;
|
|
// vector dqapex->dqmin
|
|
vqa1MinX = -1 / 3;
|
|
vqa1MinY = dq0 - dq1;
|
|
}
|
|
// Compare cross products of these vectors to determine, if
|
|
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
|
|
var a1a2_a1Min = vqa1a2X * vqa1MinY - vqa1a2Y * vqa1MinX,
|
|
a1Max_a1Min = vqa1MaxX * vqa1MinY - vqa1MaxY * vqa1MinX;
|
|
return a1a2_a1Min * a1Max_a1Min < 0
|
|
// Point [2/3, dq2] is inside the triangle, the hull is a triangle.
|
|
? [
|
|
[ 0, dq0, dqMaxX, dqMaxY ],
|
|
[ dqMaxX, dqMaxY, 1, dq3 ],
|
|
[ 1, dq3, 0, dq0 ]
|
|
]
|
|
// Convexhull is a quadrilateral and we need all lines in the
|
|
// correct order where line [0, q0, 1, q3] is part of the hull.
|
|
: [
|
|
[ 0, dq0, 1 / 3, dq1 ],
|
|
[ 1 / 3, dq1, 2 / 3, dq2 ],
|
|
[ 2 / 3, dq2, 1, dq3 ],
|
|
[ 1, dq3, 0, dq0 ]
|
|
];
|
|
}
|
|
|
|
// This is basically an "unrolled" version of #Line.getDistance() with sign
|
|
// May be a static method could be better!
|
|
function getSignedDistance(a1x, a1y, a2x, a2y, bx, by) {
|
|
var m = (a2y - a1y) / (a2x - a1x),
|
|
b = a1y - (m * a1x);
|
|
return (by - (m * bx) - b) / Math.sqrt(m * m + 1);
|
|
}
|
|
|
|
/**
|
|
* Intersections between curve and line becomes rather simple here mostly
|
|
* because of Numerical class. We can rotate the curve and line so that the line
|
|
* is on X axis, and solve the implicit equations for X axis and the curve.
|
|
*/
|
|
function getCurveLineIntersections(v1, v2, curve1, curve2, locations, flip) {
|
|
if (flip === undefined)
|
|
flip = Curve.isLinear(v1);
|
|
var vc = flip ? v2 : v1,
|
|
vl = flip ? v1 : v2,
|
|
l1x = vl[0], l1y = vl[1],
|
|
l2x = vl[6], l2y = vl[7],
|
|
// Rotate both the curve and line around l1 so that line is on x axis
|
|
lvx = l2x - l1x,
|
|
lvy = l2y - l1y,
|
|
// Angle with x axis (1, 0)
|
|
angle = Math.atan2(-lvy, lvx),
|
|
sin = Math.sin(angle),
|
|
cos = Math.cos(angle),
|
|
// (rl1x, rl1y) = (0, 0)
|
|
rl2x = lvx * cos - lvy * sin,
|
|
rl2y = lvy * cos + lvx * sin,
|
|
vcr = [];
|
|
|
|
for(var i = 0; i < 8; i += 2) {
|
|
var x = vc[i] - l1x,
|
|
y = vc[i + 1] - l1y;
|
|
vcr.push(
|
|
x * cos - y * sin,
|
|
y * cos + x * sin);
|
|
}
|
|
var roots = [],
|
|
count = Curve.solveCubic(vcr, 1, 0, roots);
|
|
// NOTE: count could theoretically be -1 for inifnite solutions, although
|
|
// that should only happen with lines, in which case we should not be here.
|
|
for (var i = 0; i < count; i++) {
|
|
var t = roots[i];
|
|
if (t >= 0 && t <= 1) {
|
|
var point = Curve.evaluate(vcr, t, true, 0);
|
|
// We do have a point on the infinite line. Check if it falls on the
|
|
// line *segment*.
|
|
if (point.x >= 0 && point.x <= rl2x)
|
|
addLocation(locations,
|
|
flip ? curve2 : curve1,
|
|
// The actual intersection point
|
|
t, Curve.evaluate(vc, t, true, 0),
|
|
flip ? curve1 : curve2);
|
|
}
|
|
}
|
|
}
|
|
|
|
function getLineLineIntersection(v1, v2, curve1, curve2, locations) {
|
|
var point = Line.intersect(
|
|
v1[0], v1[1], v1[6], v1[7],
|
|
v2[0], v2[1], v2[6], v2[7], false);
|
|
// Passing null for parameter leads to lazy determination of parameter
|
|
// values in CurveLocation#getParameter() only once they are requested.
|
|
if (point)
|
|
addLocation(locations, curve1, null, point, curve2);
|
|
}
|
|
|
|
};
|