mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-25 08:49:48 -05:00
659 lines
18 KiB
JavaScript
659 lines
18 KiB
JavaScript
var Path = this.Path = PathItem.extend({
|
|
beans: true,
|
|
|
|
initialize: function(/* segments */) {
|
|
this.base();
|
|
this.closed = false;
|
|
this._segments = [];
|
|
// Support both passing of segments as array or arguments
|
|
// If it is an array, it can also be a description of a point, so
|
|
// check its first entry for object as well
|
|
var segments = arguments[0];
|
|
if (!segments || !Base.isArray(segments)
|
|
|| typeof segments[0] != 'object')
|
|
segments = arguments;
|
|
for (var i = 0, l = segments.length; i < l; i++) {
|
|
var seg = Segment.read(segments, i, 1);
|
|
this._add(seg);
|
|
}
|
|
},
|
|
|
|
/**
|
|
* The segments contained within the path.
|
|
*/
|
|
getSegments: function() {
|
|
return this._segments;
|
|
},
|
|
|
|
setSegments: function(segments) {
|
|
var l = segments.length;
|
|
this._segments = new Array(l);
|
|
for(var i = 0; i < l; i++) {
|
|
this._segments[i] = Segment.read(segments, i, 1);
|
|
}
|
|
},
|
|
|
|
// TODO: Add back to Scriptographer:
|
|
|
|
getFirstSegment: function() {
|
|
return this._segments[0];
|
|
},
|
|
|
|
getLastSegment: function() {
|
|
return this._segments[this._segments.length - 1];
|
|
},
|
|
|
|
// TODO: Consider adding getSubPath(a, b), returning a part of the current
|
|
// path, with the added benefit that b can be < a, and closed looping is
|
|
// taken into account.
|
|
|
|
// Calculates arclength of a cubic using adaptive simpson integration.
|
|
getCurveLength: function(goal) {
|
|
var seg0 = this._segments[0], seg1 = this._segments[1];
|
|
var z0 = seg0.point,
|
|
z1 = seg1.point,
|
|
c0 = z0.add(seg0.handleOut),
|
|
c1 = z1.add(seg1.handleIn);
|
|
// TODO: Check for straight lines and handle separately.
|
|
|
|
// Calculate the coefficients of a Bezier derivative, divided by 3.
|
|
var ax = 3 * (c0.x - c1.x) - z0.x + z1.x;
|
|
var bx = 2 * (z0.x + c1.x) - 4 * c0.x;
|
|
var cx = c0.x - z0.x;
|
|
|
|
var ay = 3 * (c0.y - c1.y) - z0.y + z1.y;
|
|
var by = 2 * (z0.y + c1.y) - 4 * c0.y;
|
|
var cy = c0.y - z0.y;
|
|
|
|
function ds(t) {
|
|
// Calculate quadratic equations of derivatives for x and y
|
|
var dx = (ax * t + bx) * t + cx;
|
|
var dy = (ay * t + by) * t + cy;
|
|
return Math.sqrt(dx * dx + dy * dy);
|
|
}
|
|
|
|
var integral = MathUtils.simpson(ds, 0.0, 1.0, MathUtils.EPSILON, 1.0);
|
|
if (integral == null)
|
|
throw new Error('Nesting capacity exceeded in Path#getLenght()');
|
|
// Multiply by 3 again, as derivative was divided by 3
|
|
var length = 3 * integral;
|
|
if (goal == undefined || goal < 0 || goal >= length)
|
|
return length;
|
|
var result = MathUtils.unsimpson(goal, ds, 0, goal / integral,
|
|
100 * MathUtils.EPSILON, integral, Math.sqrt(MathUtils.EPSILON), 1);
|
|
if (!result)
|
|
throw new Error('Nesting capacity exceeded in computing arctime');
|
|
return -result.b;
|
|
},
|
|
|
|
_transform: function(matrix, flags) {
|
|
var coords = new Array(6);
|
|
for (var i = 0, l = this._segments.length; i < l; i++) {
|
|
var segment = this._segments[i];
|
|
// Use matrix.transform version() that takes arrays of multiple
|
|
// points for largely improved performance, as no calls to
|
|
// Point.read() and Point constructors are necessary.
|
|
var point = segment.point;
|
|
var handleIn = segment.handleIn;
|
|
if (handleIn.isZero())
|
|
handleIn = null;
|
|
var handleOut = segment.handleOut;
|
|
if (handleOut.isZero())
|
|
handleOut = null;
|
|
var x = point.x, y = point.y;
|
|
coords[0] = x;
|
|
coords[1] = y;
|
|
var index = 2;
|
|
// We need to convert handles to absolute coordinates in order
|
|
// to transform them.
|
|
if (handleIn) {
|
|
coords[index++] = handleIn.x + x;
|
|
coords[index++] = handleIn.y + y;
|
|
}
|
|
if (handleOut) {
|
|
coords[index++] = handleOut.x + x;
|
|
coords[index++] = handleOut.y + y;
|
|
}
|
|
matrix.transform(coords, 0, coords, 0, index / 2);
|
|
x = point.x = coords[0];
|
|
y = point.y = coords[1];
|
|
index = 2;
|
|
if (handleIn) {
|
|
handleIn.x = coords[index++] - x;
|
|
handleIn.y = coords[index++] - y;
|
|
}
|
|
if (handleOut) {
|
|
handleOut.x = coords[index++] - x;
|
|
handleOut.y = coords[index++] - y;
|
|
}
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Private method that adds a segment to the segment list. It assumes that
|
|
* the passed object is a segment already and does not perform any checks.
|
|
*/
|
|
_add: function(segment, index) {
|
|
// If this segment belongs to another path already, clone it before
|
|
// adding.
|
|
if (segment.path)
|
|
segment = new Segment(segment);
|
|
segment.path = this;
|
|
if (index == undefined) {
|
|
this._segments.push(segment);
|
|
} else {
|
|
this._segments.splice(index, 0, segment);
|
|
}
|
|
return segment;
|
|
},
|
|
|
|
add: function() {
|
|
var segment = Segment.read(arguments);
|
|
return segment ? this._add(segment) : null;
|
|
},
|
|
|
|
insert: function(index, segment) {
|
|
var segment = Segment.read(arguments, 1);
|
|
return segment ? this._add(segment, index) : null;
|
|
},
|
|
|
|
/**
|
|
* PostScript-style drawing commands
|
|
*/
|
|
|
|
/**
|
|
* Helper method that returns the current segment and checks if we need to
|
|
* execute a moveTo() command first.
|
|
*/
|
|
getCurrentSegment: function() {
|
|
if (this._segments.length == 0)
|
|
throw('Use a moveTo() command first');
|
|
return this._segments[this._segments.length - 1];
|
|
},
|
|
|
|
moveTo: function() {
|
|
var segment = Segment.read(arguments);
|
|
if (segment && !this._segments.length)
|
|
this._add(segment);
|
|
},
|
|
|
|
lineTo: function() {
|
|
var segment = Segment.read(arguments);
|
|
if (segment)
|
|
this._add(segment);
|
|
},
|
|
|
|
/**
|
|
* Adds a cubic bezier curve to the path, defined by two handles and a to
|
|
* point.
|
|
*/
|
|
cubicCurveTo: function(handle1, handle2, to) {
|
|
// First modify the current segment:
|
|
var current = this.currentSegment;
|
|
// Convert to relative values:
|
|
current.handleOut = new Point(
|
|
handle1.x - current.point.x,
|
|
handle1.y - current.point.y);
|
|
// And add the new segment, with handleIn set to c2
|
|
this._add(
|
|
new Segment(to, handle2.subtract(to), new Point())
|
|
);
|
|
},
|
|
|
|
/**
|
|
* Adds a quadratic bezier curve to the path, defined by a handle and a to
|
|
* point.
|
|
*/
|
|
quadraticCurveTo: function(handle, to) {
|
|
// This is exact:
|
|
// If we have the three quad points: A E D,
|
|
// and the cubic is A B C D,
|
|
// B = E + 1/3 (A - E)
|
|
// C = E + 1/3 (D - E)
|
|
var current = this.currentSegment;
|
|
var x1 = current.point.x;
|
|
var y1 = current.point.y;
|
|
this.cubicCurveTo(
|
|
handle.add(current.point.subtract(handle).multiply(1/3)),
|
|
handle.add(to.subtract(handle).multiply(1/3)),
|
|
to
|
|
);
|
|
},
|
|
|
|
curveTo: function(through, to, parameter) {
|
|
through = new Point(through);
|
|
to = new Point(to);
|
|
if (parameter == null)
|
|
parameter = 0.5;
|
|
var current = this.currentSegment.point;
|
|
// handle = (through - (1 - t)^2 * current - t^2 * to) /
|
|
// (2 * (1 - t) * t)
|
|
var t1 = 1 - parameter;
|
|
var handle = through.subtract(
|
|
current.multiply(t1 * t1)).subtract(
|
|
to.multiply(parameter * parameter)).divide(
|
|
2.0 * parameter * t1);
|
|
if (handle.isNaN())
|
|
throw new Error(
|
|
"Cannot put a curve through points with parameter="
|
|
+ parameter);
|
|
this.quadraticCurveTo(handle, to);
|
|
},
|
|
|
|
arcTo: function(to, clockwise) {
|
|
var through, to;
|
|
// Get the start point:
|
|
var current = this.currentSegment;
|
|
if (arguments[1] && typeof arguments[1] != 'boolean') {
|
|
through = new Point(arguments[0]);
|
|
to = new Point(arguments[1]);
|
|
} else {
|
|
if (clockwise === null)
|
|
clockwise = true;
|
|
var middle = current.point.add(to).divide(2);
|
|
var step = middle.subtract(current.point);
|
|
through = clockwise
|
|
? middle.subtract(-step.y, step.x)
|
|
: middle.add(-step.y, step.x);
|
|
}
|
|
|
|
var x1 = current.point.x, x2 = through.x, x3 = to.x;
|
|
var y1 = current.point.y, y2 = through.y, y3 = to.y;
|
|
|
|
var f = x3 * x3 - x3 * x2 - x1 * x3 + x1 * x2 + y3 * y3 - y3 * y2
|
|
- y1 * y3 + y1 * y2;
|
|
var g = x3 * y1 - x3 * y2 + x1 * y2 - x1 * y3 + x2 * y3 - x2 * y1;
|
|
var m = g == 0 ? 0 : f / g;
|
|
|
|
var c = (m * y2) - x2 - x1 - (m * y1);
|
|
var d = (m * x1) - y1 - y2 - (x2 * m);
|
|
var e = (x1 * x2) + (y1 * y2) - (m * x1 * y2) + (m * x2 * y1);
|
|
|
|
var centerX = -c / 2;
|
|
var centerY = -d / 2;
|
|
var radius = Math.sqrt(centerX * centerX + centerY * centerY - e);
|
|
|
|
// Note: reversing the Y equations negates the angle to adjust
|
|
// for the upside down coordinate system.
|
|
var angle = Math.atan2(centerY - y1, x1 - centerX);
|
|
var middle = Math.atan2(centerY - y2, x2 - centerX);
|
|
var extent = Math.atan2(centerY - y3, x3 - centerX);
|
|
|
|
var diff = middle - angle;
|
|
if (diff < -Math.PI)
|
|
diff += Math.PI * 2;
|
|
else if (diff > Math.PI)
|
|
diff -= Math.PI * 2;
|
|
|
|
extent -= angle;
|
|
if (extent <= 0.0)
|
|
extent += Math.PI * 2;
|
|
|
|
if (diff < 0) extent = Math.PI * 2 - extent;
|
|
else extent = -extent;
|
|
angle = -angle;
|
|
|
|
var ext = Math.abs(extent);
|
|
var arcSegs;
|
|
if (ext >= 2 * Math.PI) arcSegs = 4;
|
|
else arcSegs = Math.ceil(ext * 2 / Math.PI);
|
|
|
|
var inc = extent;
|
|
if (inc > 2 * Math.PI) inc = 2 * Math.PI;
|
|
else if (inc < -2 * Math.PI) inc = -2 * Math.PI;
|
|
inc /= arcSegs;
|
|
|
|
var halfInc = inc / 2;
|
|
var z = 4 / 3 * Math.sin(halfInc) / (1 + Math.cos(halfInc));
|
|
|
|
for (var i = 0; i <= arcSegs; i++) {
|
|
var relx = Math.cos(angle);
|
|
var rely = Math.sin(angle);
|
|
var pt = new Point(centerX + relx * radius,
|
|
centerY + rely * radius);
|
|
var out;
|
|
if (i == arcSegs) out = null;
|
|
else out = new Point(centerX + (relx - z * rely) * radius - pt.x,
|
|
centerY + (rely + z * relx) * radius - pt.y);
|
|
if (i == 0) {
|
|
// Modify startSegment
|
|
current.handleOut = out;
|
|
} else {
|
|
// Add new Segment
|
|
var inPoint = new Point(
|
|
centerX + (relx + z * rely) * radius - pt.x,
|
|
centerY + (rely - z * relx) * radius - pt.y);
|
|
this._add(new Segment(pt, inPoint, out));
|
|
}
|
|
angle += inc;
|
|
}
|
|
},
|
|
|
|
lineBy: function() {
|
|
var vector = Point.read(arguments);
|
|
if (vector) {
|
|
var current = this.currentSegment;
|
|
this.lineTo(current.point.add(vector));
|
|
}
|
|
},
|
|
|
|
curveBy: function(throughVector, toVector, parameter) {
|
|
throughVector = Point.read(throughVector);
|
|
toVector = Point.read(toVector);
|
|
var current = this.currentSegment.point;
|
|
this.curveTo(current.add(throughVector), current.add(toVector),
|
|
parameter);
|
|
},
|
|
|
|
arcBy: function(throughVector, toVector) {
|
|
throughVector = Point.read(throughVector);
|
|
toVector = Point.read(toVector);
|
|
var current = this.currentSegment.point;
|
|
this.arcBy(current.add(throughVector), current.add(toVector));
|
|
},
|
|
|
|
closePath: function() {
|
|
this.closed = ture;
|
|
},
|
|
|
|
draw: function(ctx, param) {
|
|
if (!param.compound)
|
|
ctx.beginPath();
|
|
var segments = this._segments;
|
|
var length = segments.length;
|
|
for (var i = 0; i < length; i++) {
|
|
var segment = segments[i];
|
|
var x = segment.point.x;
|
|
var y = segment.point.y;
|
|
var handleIn = segment.handleIn;
|
|
if (i == 0) {
|
|
ctx.moveTo(x, y);
|
|
} else {
|
|
if (handleOut.isZero() && handleIn.isZero()) {
|
|
ctx.lineTo(x, y);
|
|
} else {
|
|
ctx.bezierCurveTo(
|
|
outX, outY,
|
|
handleIn.x + x, handleIn.y + y,
|
|
x, y
|
|
);
|
|
}
|
|
}
|
|
var handleOut = segment.handleOut;
|
|
var outX = handleOut.x + x;
|
|
var outY = handleOut.y + y;
|
|
}
|
|
if (this.closed && length > 1) {
|
|
var segment = segments[0];
|
|
var x = segment.point.x;
|
|
var y = segment.point.y;
|
|
var handleIn = segment.handleIn;
|
|
ctx.bezierCurveTo(outX, outY, handleIn.x + x, handleIn.y + y, x, y);
|
|
ctx.closePath();
|
|
}
|
|
// If the path is part of a compound path or doesn't have a fill or
|
|
// stroke, there is no need to continue.
|
|
var fillColor = this.getFillColor(),
|
|
strokeColor = this.getStrokeColor();
|
|
if (!param.compound && (fillColor || strokeColor)) {
|
|
this.setCtxStyles(ctx);
|
|
ctx.save();
|
|
// If the path only defines a strokeColor or a fillColor,
|
|
// draw it directly with the globalAlpha set, otherwise
|
|
// we will do it later when we composite the temporary canvas.
|
|
if (!fillColor || !strokeColor)
|
|
ctx.globalAlpha = this.opacity;
|
|
if (fillColor) {
|
|
ctx.fillStyle = fillColor.getCanvasStyle(ctx);
|
|
ctx.fill();
|
|
}
|
|
if (strokeColor) {
|
|
ctx.strokeStyle = strokeColor.getCanvasStyle(ctx);
|
|
ctx.stroke();
|
|
}
|
|
ctx.restore();
|
|
}
|
|
}
|
|
}, new function() { // Inject methods that require scoped privates
|
|
|
|
function calculateBounds(that, includeStroke) {
|
|
// Code ported and further optimised from:
|
|
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
|
|
var segments = that._segments, first = segments[0], prev = first;
|
|
if (!first)
|
|
return null;
|
|
var min = first.point.clone(), max = min.clone();
|
|
var coords = ['x', 'y'];
|
|
function processSegment(segment) {
|
|
for (var i = 0; i < 2; i++) {
|
|
var coord = coords[i];
|
|
|
|
var v0 = prev.point[coord],
|
|
v1 = v0 + prev.handleOut[coord],
|
|
v3 = segment.point[coord],
|
|
v2 = v3 + segment.handleIn[coord];
|
|
|
|
function add(value, t) {
|
|
if (value == null) {
|
|
// Calculate bezier polynomial at t
|
|
var u = 1 - t;
|
|
value = u * u * u * v0
|
|
+ 3 * u * u * t * v1
|
|
+ 3 * u * t * t * v2
|
|
+ t * t * t * v3;
|
|
}
|
|
if (value < min[coord]) {
|
|
min[coord] = value;
|
|
} else if (value > max[coord]) {
|
|
max[coord] = value;
|
|
}
|
|
}
|
|
add(v3);
|
|
|
|
// Calculate derivative of our bezier polynomial, divided by 3.
|
|
// Dividing by 3 allows for simpler calculations of a, b, c and
|
|
// leads to the same quadratic roots below.
|
|
var a = 3 * (v1 - v2) - v0 + v3;
|
|
var b = 2 * (v0 + v2) - 4 * v1;
|
|
var c = v1 - v0;
|
|
|
|
// Solve for derivative for quadratic roots. Each good root
|
|
// (meaning a solution 0 < t < 1) is an extrema in the cubic
|
|
// polynomial and thus a potential point defining the bounds
|
|
if (a == 0) {
|
|
if (b == 0)
|
|
continue;
|
|
var t = -c / b;
|
|
// Test for good root and add to bounds if good (same below)
|
|
if (0 < t && t < 1)
|
|
add(null, t);
|
|
continue;
|
|
}
|
|
|
|
var b2ac = b * b - 4 * a * c;
|
|
if (b2ac < 0)
|
|
continue;
|
|
var sqrt = Math.sqrt(b2ac),
|
|
f = 1 / (a * -2),
|
|
t1 = (b - sqrt) * f,
|
|
t2 = (b + sqrt) * f;
|
|
if (0 < t1 && t1 < 1)
|
|
add(null, t1);
|
|
if (0 < t2 && t2 < 1)
|
|
add(null, t2);
|
|
}
|
|
prev = segment;
|
|
}
|
|
for (var i = 1, l = segments.length; i < l; i++)
|
|
processSegment(segments[i]);
|
|
if (that.closed)
|
|
processSegment(first);
|
|
return new Rectangle(min.x, min.y, max.x - min.x , max.y - min.y);
|
|
}
|
|
|
|
/**
|
|
* Solves a tri-diagonal system for one of coordinates (x or y) of first
|
|
* bezier control points.
|
|
*
|
|
* @param rhs right hand side vector.
|
|
* @return Solution vector.
|
|
*/
|
|
function getFirstControlPoints(rhs) {
|
|
var n = rhs.length;
|
|
var x = []; // Solution vector.
|
|
var tmp = []; // Temporary workspace.
|
|
var b = 2;
|
|
x[0] = rhs[0] / b;
|
|
// Decomposition and forward substitution.
|
|
for (var i = 1; i < n; i++) {
|
|
tmp[i] = 1 / b;
|
|
b = (i < n - 1 ? 4.0 : 2.0) - tmp[i];
|
|
x[i] = (rhs[i] - x[i - 1]) / b;
|
|
}
|
|
// Back-substitution.
|
|
for (var i = 1; i < n; i++) {
|
|
x[n - i - 1] -= tmp[n - i] * x[n - i];
|
|
}
|
|
return x;
|
|
};
|
|
|
|
var styles = {
|
|
getStrokeWidth: 'lineWidth',
|
|
getStrokeJoin: 'lineJoin',
|
|
getStrokeCap: 'lineCap',
|
|
getMiterLimit: 'miterLimit'
|
|
};
|
|
|
|
return {
|
|
beans: true,
|
|
|
|
/**
|
|
* The bounding rectangle of the item excluding stroke width.
|
|
*/
|
|
getBounds: function() {
|
|
return calculateBounds(this, false);
|
|
},
|
|
|
|
/**
|
|
* The bounding rectangle of the item including stroke width.
|
|
*/
|
|
getStrokeBounds: function() {
|
|
return calculateBounds(this, true);
|
|
},
|
|
|
|
/**
|
|
* The bounding rectangle of the item including handles.
|
|
*/
|
|
getControlBounds: function() {
|
|
// TODO: Implement!
|
|
},
|
|
|
|
smooth: function() {
|
|
var segments = this._segments;
|
|
|
|
// This code is based on the work by Oleg V. Polikarpotchkin,
|
|
// http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry
|
|
// It was extended to support closed paths by averaging overlapping
|
|
// beginnings and ends. The result of this approach is very close to
|
|
// Polikarpotchkin's closed curve solution, but reuses the same
|
|
// algorithm as for open paths, and is probably executing faster as
|
|
// well, so it is preferred.
|
|
var size = segments.length;
|
|
if (size <= 2)
|
|
return;
|
|
|
|
var n = size;
|
|
// Add overlapping ends for averaging handles in closed paths
|
|
var overlap;
|
|
if (this.closed) {
|
|
// Overlap up to 4 points since averaging beziers affect the 4
|
|
// neighboring points
|
|
overlap = Math.min(size, 4);
|
|
n += Math.min(size, overlap) * 2;
|
|
} else {
|
|
overlap = 0;
|
|
}
|
|
var knots = [];
|
|
for (var i = 0; i < size; i++)
|
|
knots[i + overlap] = segments[i].point;
|
|
if (this.closed) {
|
|
// If we're averaging, add the 4 last points again at the
|
|
// beginning, and the 4 first ones at the end.
|
|
for (var i = 0; i < overlap; i++) {
|
|
knots[i] = segments[i + size - overlap].point;
|
|
knots[i + size + overlap] = segments[i].point;
|
|
}
|
|
} else {
|
|
n--;
|
|
}
|
|
// Calculate first Bezier control points
|
|
// Right hand side vector
|
|
var rhs = [];
|
|
|
|
// Set right hand side X values
|
|
for (var i = 1; i < n - 1; i++)
|
|
rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x;
|
|
rhs[0] = knots[0].x + 2 * knots[1].x;
|
|
rhs[n - 1] = 3 * knots[n - 1].x;
|
|
// Get first control points X-values
|
|
var x = getFirstControlPoints(rhs);
|
|
|
|
// Set right hand side Y values
|
|
for (var i = 1; i < n - 1; i++)
|
|
rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y;
|
|
rhs[0] = knots[0].y + 2 * knots[1].y;
|
|
rhs[n - 1] = 3 * knots[n - 1].y;
|
|
// Get first control points Y-values
|
|
var y = getFirstControlPoints(rhs);
|
|
|
|
if (this.closed) {
|
|
// Do the actual averaging simply by linearly fading between the
|
|
// overlapping values.
|
|
for (var i = 0, j = size; i < overlap; i++, j++) {
|
|
var f1 = (i / overlap);
|
|
var f2 = 1 - f1;
|
|
// Beginning
|
|
x[j] = x[i] * f1 + x[j] * f2;
|
|
y[j] = y[i] * f1 + y[j] * f2;
|
|
// End
|
|
var ie = i + overlap, je = j + overlap;
|
|
x[je] = x[ie] * f2 + x[je] * f1;
|
|
y[je] = y[ie] * f2 + y[je] * f1;
|
|
}
|
|
n--;
|
|
}
|
|
var handleIn = null;
|
|
// Now set the calculated handles
|
|
for (var i = overlap; i <= n - overlap; i++) {
|
|
var segment = segments[i - overlap];
|
|
if (handleIn != null)
|
|
segment.handleIn = handleIn.subtract(segment.point);
|
|
if (i < n) {
|
|
segment.handleOut =
|
|
new Point(x[i], y[i]).subtract(segment.point);
|
|
if (i < n - 1)
|
|
handleIn = new Point(
|
|
2 * knots[i + 1].x - x[i + 1],
|
|
2 * knots[i + 1].y - y[i + 1]);
|
|
else
|
|
handleIn = new Point(
|
|
(knots[n].x + x[n - 1]) / 2,
|
|
(knots[n].y + y[n - 1]) / 2);
|
|
}
|
|
}
|
|
if (closed && handleIn != null) {
|
|
var segment = this._segments[0];
|
|
segment.handleIn = handleIn.subtract(segment.point);
|
|
}
|
|
},
|
|
|
|
setCtxStyles: function(context) {
|
|
for (var i in styles) {
|
|
var style;
|
|
if (style = this[i]()) {
|
|
context[styles[i]] = style;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
});
|