mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-20 22:39:50 -05:00
573 lines
20 KiB
JavaScript
573 lines
20 KiB
JavaScript
|
|
|
|
/*!
|
|
*
|
|
* Vector boolean operations on paperjs objects
|
|
* This is mostly written for clarity (I hope it is clear) and compatibility,
|
|
* not optimised for performance, and has to be tested heavily for stability.
|
|
* (Looking up to Java's Area path boolean algorithms for stability,
|
|
* but the code is too complex —mainly because the operations are stored and
|
|
* enumerable, such as quadraticCurveTo, cubicCurveTo etc.; and is largely
|
|
* undocumented to directly adapt from)
|
|
*
|
|
* Supported
|
|
* - paperjs Path objects
|
|
* - Boolean Union operations
|
|
* - Boolean Intersection operations
|
|
* - handles path complexity quite nicely
|
|
*
|
|
* Not supported yet ( which I would like to see supported )
|
|
* - Compound Paths as input ( however compound paths are correctly handled in the output )
|
|
* - Self-intersecting Paths
|
|
* - Boolean Subtraction operation ( depends on compound paths as input )
|
|
* - Paths are clones of each other that ovelap exactly on top of each other!
|
|
*
|
|
* In the Not-supported-yet list, the first three can be easily implemented,
|
|
* as for the last point, I need help! Thanks! :)
|
|
*
|
|
* ------
|
|
* Harikrishnan Gopalakrishnan
|
|
* http://hkrish.com/playground/paperjs/booleanStudy.html
|
|
*
|
|
* ------
|
|
* Paperjs
|
|
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
|
|
* http://paperjs.org/license/
|
|
*
|
|
*/
|
|
|
|
|
|
/**
|
|
* BooleanOps defines the boolean operator functions to use.
|
|
* A boolean operator is a function f( link:Link, isInsidePath1:Boolean, isInsidePath2:Boolean ) :
|
|
* should return a Boolean value indicating whether to keep the link or not.
|
|
* return true - keep the path
|
|
* return false - discard the path
|
|
*/
|
|
var BooleanOps = {
|
|
Union: function( lnk, isInsidePath1, isInsidePath2 ){
|
|
if( isInsidePath1 || isInsidePath2 ){
|
|
return false;
|
|
}
|
|
return true;
|
|
},
|
|
|
|
Intersection: function( lnk, isInsidePath1, isInsidePath2 ){
|
|
if( !isInsidePath1 && !isInsidePath2 ){
|
|
return false;
|
|
}
|
|
return true;
|
|
},
|
|
|
|
// path1 - path2
|
|
Subtraction: function( lnk, isInsidePath1, isInsidePath2 ){
|
|
var lnkid = lnk.id;
|
|
if( lnkid === 1 && isInsidePath2 ){
|
|
return false;
|
|
} else if( lnkid === 2 && !isInsidePath1 ){
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* The datastructure for boolean computation:
|
|
* Graph - List of Links
|
|
* Link - Connects 2 Nodes, represents a Curve
|
|
* Node - Connects 2 Links, represents a Segment
|
|
*/
|
|
|
|
var NORMAL_NODE = 1;
|
|
var INTERSECTION_NODE = 2;
|
|
var IntersectionID = 1;
|
|
var UNIQUE_ID = 1;
|
|
|
|
/**
|
|
* Nodes in the graph are analogous to Segment objects
|
|
* with additional linkage information to track intersections etc.
|
|
* (enough to do a complete graph traversal)
|
|
* @param {Point} _point
|
|
* @param {Point} _handleIn
|
|
* @param {Point} _handleOut
|
|
* @param {Any} _id
|
|
*/
|
|
function Node( _point, _handleIn, _handleOut, _id, isBaseContour ){
|
|
this.id = _id;
|
|
this.isBaseContour = isBaseContour;
|
|
this.type = NORMAL_NODE;
|
|
this.point = _point;
|
|
this.handleIn = _handleIn; // handleIn
|
|
this.handleOut = _handleOut; // handleOut
|
|
this.linkIn = null; // aka linkIn
|
|
this.linkOut = null; // linkOut
|
|
this.uniqueID = ++UNIQUE_ID;
|
|
|
|
// In case of an intersection this will be a merged node.
|
|
// And we need space to save the "other Node's" parameters before merging.
|
|
this.idB = null;
|
|
this.isBaseContourB = false;
|
|
// this.pointB = this.point; // point should be the same
|
|
this.handleBIn = null;
|
|
this.handleBOut = null;
|
|
this.linkBIn = null;
|
|
this.linkBOut = null;
|
|
|
|
this._segment = null;
|
|
|
|
this.getSegment = function( recalculate ){
|
|
if( this.type === INTERSECTION_NODE && recalculate ){
|
|
// point this.linkIn and this.linkOut to those active ones
|
|
// also point this.handleIn and this.handleOut to correct in and out handles
|
|
// If a link is null, make sure the corresponding handle is also null
|
|
this.handleIn = (this.linkIn)? this.handleIn : null;
|
|
this.handleOut = (this.linkOut)? this.handleOut : null;
|
|
this.handleBIn = (this.linkBIn)? this.handleBIn : null;
|
|
this.handleBOut = (this.linkBOut)? this.handleBOut : null;
|
|
// Select the valid links
|
|
this.linkIn = this.linkIn || this.linkBIn; // linkIn
|
|
this.linkOut = this.linkOut || this.linkBOut; // linkOut
|
|
// Also update the references in links to point to "this" Node
|
|
this.linkIn.nodeOut = this; // linkIn.nodeEnd
|
|
this.linkOut.nodeIn = this; // linkOut.nodeStart
|
|
this.handleIn = this.handleIn || this.handleBIn;
|
|
this.handleOut = this.handleOut || this.handleBOut;
|
|
this.isBaseContour = this.isBaseContour | this.isBaseContourB;
|
|
}
|
|
this._segment = this._segment || new Segment( this.point, this.handleIn, this.handleOut );
|
|
return this._segment;
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Links in the graph are analogous to CUrve objects
|
|
* @param {Node} _nodeIn
|
|
* @param {Node} _nodeOut
|
|
* @param {Any} _id
|
|
*/
|
|
function Link( _nodeIn, _nodeOut, _id, isBaseContour ) {
|
|
this.id = _id;
|
|
this.isBaseContour = isBaseContour;
|
|
this.nodeIn = _nodeIn; // nodeStart
|
|
this.nodeOut = _nodeOut; // nodeEnd
|
|
this.nodeIn.linkOut = this; // nodeStart.linkOut
|
|
this.nodeOut.linkIn = this; // nodeEnd.linkIn
|
|
this._curve = null;
|
|
this.intersections = [];
|
|
|
|
// for reusing the paperjs function we need to (temperorily) build a Curve object from this Link
|
|
// for performance reasons we cache it.
|
|
this.getCurve = function() {
|
|
this._curve = this._curve || new Curve( this.nodeIn.getSegment(), this.nodeOut.getSegment() );
|
|
return this._curve;
|
|
};
|
|
}
|
|
|
|
/**
|
|
* makes a graph. Only works on paths, for compound paths we need to
|
|
* make graphs for each of the child paths and merge them.
|
|
* @param {Path} path
|
|
* @param {Integer} id
|
|
* @return {Array} Links
|
|
*/
|
|
function makeGraph( path, id, isBaseContour ){
|
|
var graph = [];
|
|
var segs = path.segments, prevNode = null, firstNode = null, nuLink, nuNode;
|
|
for( i = 0, l = segs.length; i < l; i++ ){
|
|
// var nuSeg = segs[i].clone();
|
|
var nuSeg = segs[i];
|
|
nuNode = new Node( nuSeg.point, nuSeg.handleIn, nuSeg.handleOut, id, isBaseContour );
|
|
if( prevNode ) {
|
|
nuLink = new Link( prevNode, nuNode, id, isBaseContour );
|
|
graph.push( nuLink );
|
|
}
|
|
prevNode = nuNode;
|
|
if( !firstNode ){
|
|
firstNode = nuNode;
|
|
}
|
|
}
|
|
// the path is closed
|
|
nuLink = new Link( prevNode, firstNode, id, isBaseContour );
|
|
graph.push( nuLink );
|
|
return graph;
|
|
}
|
|
|
|
/**
|
|
* Calculates the Union of two paths
|
|
* Boolean API.
|
|
* @param {Path} path1
|
|
* @param {Path} path2
|
|
* @return {CompoundPath} union of path1 & path2
|
|
*/
|
|
function boolUnion( path1, path2 ){
|
|
return computeBoolean( path1, path2, BooleanOps.Union );
|
|
}
|
|
|
|
|
|
/**
|
|
* Calculates the Intersection between two paths
|
|
* Boolean API.
|
|
* @param {Path} path1
|
|
* @param {Path} path2
|
|
* @return {CompoundPath} Intersection of path1 & path2
|
|
*/
|
|
function boolIntersection( path1, path2 ){
|
|
return computeBoolean( path1, path2, BooleanOps.Intersection );
|
|
}
|
|
|
|
|
|
/**
|
|
* Calculates path1—path2
|
|
* Boolean API.
|
|
* @param {Path} path1
|
|
* @param {Path} path2
|
|
* @return {CompoundPath} path1 <minus> path2
|
|
*/
|
|
function boolSubtract( path1, path2 ){
|
|
return computeBoolean( path1, path2, BooleanOps.Subtraction );
|
|
}
|
|
|
|
|
|
/**
|
|
* Actual function that computes the boolean
|
|
* @param {Path} _path1 (cannot be self-intersecting at the moment)
|
|
* @param {Path} _path2 (cannot be self-intersecting at the moment)
|
|
* @param {BooleanOps type} operator
|
|
* @return {CompoundPath} boolean result
|
|
*/
|
|
function computeBoolean( _path1, _path2, operator ){
|
|
IntersectionID = 1;
|
|
UNIQUE_ID = 1;
|
|
|
|
// The boolean operation may modify the original paths
|
|
var path1 = _path1.clone();
|
|
var path2 = _path2.clone();
|
|
// if( !path1.clockwise ){ path1.reverse(); }
|
|
// if( !path2.clockwise ){ path2.reverse(); }
|
|
//
|
|
var i, j, k, l, lnk, crv, node, nuNode, leftLink, rightLink;
|
|
|
|
// Prepare the graphs. Graphs are list of Links that retains
|
|
// full connectivity information. The order of links in a graph is not important
|
|
// That allows us to sort and merge graphs and 'splice' links with their splits easily.
|
|
// Also, this is the place to resolve self-intersecting paths
|
|
var graph = [], path1Children, path2Children, base;
|
|
if( path1 instanceof CompoundPath ){
|
|
path1Children = path1.children;
|
|
for (i = 0, base = true, l = path1Children.length; i < l; i++, base = false) {
|
|
path1Children[i].closed = true;
|
|
graph = graph.concat( makeGraph( path1Children[i], 1, base ) );
|
|
}
|
|
} else {
|
|
path1.closed = true;
|
|
// path1.clockwise = true;
|
|
graph = graph.concat( makeGraph( path1, 1, 1, true ) );
|
|
}
|
|
|
|
// if operator === BooleanOps.Subtraction, then reverse path2
|
|
// so that the nodes and links will link correctly
|
|
var reverse = ( operator === BooleanOps.Subtraction )? true: false;
|
|
if( path2 instanceof CompoundPath ){
|
|
path2Children = path2.children;
|
|
for (i = 0, base = true, l = path2Children.length; i < l; i++, base = false) {
|
|
path2Children[i].closed = true;
|
|
if( reverse ){ path2Children[i].reverse(); }
|
|
graph = graph.concat( makeGraph( path2Children[i], 2, i + 1, base ) );
|
|
}
|
|
} else {
|
|
path2.closed = true;
|
|
// path2.clockwise = true;
|
|
if( reverse ){ path2.reverse(); }
|
|
graph = graph.concat( makeGraph( path2, 2, 1, true ) );
|
|
}
|
|
|
|
// console.log( "Total curves: " + graph.length );
|
|
|
|
// Sort function to sort intersections according to the 'parameter'(t) in a link (curve)
|
|
function ixSort( a, b ){ return a.parameter - b.parameter; }
|
|
|
|
/*
|
|
* Pass 1:
|
|
* Calculate the intersections for all graphs
|
|
* TODO: test if this takes are of self intersecting paths - NO
|
|
* And since it doesn't take self-intersecting curves, we need to only calculate
|
|
* intersections if the "id" of the links differ.
|
|
* The rest of the algorithm can easily be modified to resolve self-intersections
|
|
*/
|
|
for ( i = graph.length - 1; i >= 0; i--) {
|
|
var c1 = graph[i].getCurve();
|
|
var v1 = c1.getValues();
|
|
for ( j = i -1; j >= 0; j-- ) {
|
|
if( graph[j].id === graph[i].id ){ continue; }
|
|
var c2 = graph[j].getCurve();
|
|
var v2 = c2.getValues();
|
|
var loc = [];
|
|
Curve._addIntersections( v1, v2, c1, loc );
|
|
if( loc.length ){
|
|
for (k = 0, l=loc.length; k<l; k++) {
|
|
graph[i].intersections.push( loc[k] );
|
|
var loc2 = new CurveLocation( c2, null, loc[k].point );
|
|
loc2.id = loc[k].id;
|
|
graph[j].intersections.push( loc2 );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Pass 2:
|
|
* Walk the graph, sort the intersections on each individual link.
|
|
* for each link that intersects with another one, replace it with new split links.
|
|
*/
|
|
for ( i = graph.length - 1; i >= 0; i--) {
|
|
if( graph[i].intersections.length ){
|
|
var ix = graph[i].intersections;
|
|
// Sort the intersections if there is more than one
|
|
if( graph[i].intersections.length > 1 ){ ix.sort( ixSort ); }
|
|
// Remove the graph link, this link has to be split and replaced with the splits
|
|
lnk = graph.splice( i, 1 )[0];
|
|
for (j =0, l=ix.length; j<l && lnk; j++) {
|
|
var splitLinks = [];
|
|
crv = lnk.getCurve();
|
|
// We need to recalculate parameter after each curve split
|
|
// This operation (except for recalculating the curve parameter),
|
|
// is fairly similar to Curve.split method, except that it operates on Node and Link objects.
|
|
var param = crv.getParameterOf( ix[j].point );
|
|
// var param = crv.getNearestLocation( ix[j] ).parameter;
|
|
if( param === 0.0 || param === 1.0) {
|
|
// Intersection falls on an existing node
|
|
// there is no need to split the link
|
|
nuNode = ( param === 0.0 )? lnk.nodeIn : lnk.nodeOut;
|
|
nuNode.type = INTERSECTION_NODE;
|
|
nuNode._intersectionID = ix[j].id;
|
|
if( param === 1.0 ){
|
|
leftLink = null;
|
|
rightLink = lnk;
|
|
} else {
|
|
leftLink = lnk;
|
|
rightLink = null;
|
|
}
|
|
} else {
|
|
var parts = Curve.subdivide(crv.getValues(), param);
|
|
var left = parts[0];
|
|
var right = parts[1];
|
|
// Make new link and convert handles from absolute to relative
|
|
// TODO: check if link is linear and set handles to null
|
|
var ixPoint = new Point( left[6], left[7] );
|
|
nuNode = new Node( ixPoint, new Point(left[4] - ixPoint.x, left[5] - ixPoint.y),
|
|
new Point(right[2] - ixPoint.x, right[3] - ixPoint.y), lnk.id, lnk.isBaseContour );
|
|
nuNode.type = INTERSECTION_NODE;
|
|
nuNode._intersectionID = ix[j].id;
|
|
// clear the cached Segment on original end nodes and Update their handles
|
|
lnk.nodeIn._segment = null;
|
|
var tmppnt = lnk.nodeIn.point;
|
|
lnk.nodeIn.handleOut = new Point( left[2] - tmppnt.x, left[3] - tmppnt.y );
|
|
lnk.nodeOut._segment = null;
|
|
tmppnt = lnk.nodeOut.point;
|
|
lnk.nodeOut.handleIn = new Point( right[4] - tmppnt.x, right[5] - tmppnt.y );
|
|
// Make new links after the split
|
|
leftLink = new Link( lnk.nodeIn, nuNode, lnk.id, lnk.isBaseContour );
|
|
rightLink = new Link( nuNode, lnk.nodeOut, lnk.id, lnk.isBaseContour );
|
|
}
|
|
// Add the first split link back to the graph, since we sorted the intersections
|
|
// already, this link should contain no more intersections to the left.
|
|
if( leftLink ){
|
|
graph.splice( i, 0, leftLink );
|
|
}
|
|
// continue with the second split link, to see if
|
|
// there are more intersections to deal with
|
|
lnk = rightLink;
|
|
}
|
|
// Add the last split link back to the graph
|
|
if( lnk ){
|
|
graph.splice( i, 0, lnk );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Pass 3:
|
|
* Merge matching intersection Node Pairs (type is INTERSECTION_NODE &&
|
|
* a._intersectionID == b._intersectionID )
|
|
*
|
|
* Mark each Link(Curve) according to whether it is
|
|
* case 1. inside Path1 ( and only Path1 )
|
|
* 2. inside Path2 ( and only Path2 )
|
|
* 3. outside (normal case)
|
|
*
|
|
* Take a test function "operator" which will discard links
|
|
* according to the above
|
|
* * Union -> discard cases 1 and 2
|
|
* * Intersection -> discard case 3
|
|
* * Path1-Path2 -> discard cases 2, 3[Path2]
|
|
*/
|
|
|
|
// step 1: discard invalid links according to the boolean operator
|
|
for ( i = graph.length - 1; i >= 0; i--) {
|
|
lnk = graph[i];
|
|
crv = lnk.getCurve();
|
|
// var midPoint = new Point(lnk.nodeIn.point);
|
|
var midPoint = crv.getPoint( 0.5 );
|
|
var insidePath1 = (lnk.id === 1 )? false : path1.contains( midPoint );
|
|
var insidePath2 = (lnk.id === 2 )? false : path2.contains( midPoint );
|
|
if( !operator( lnk, insidePath1, insidePath2 ) ){
|
|
// lnk = graph.splice( i, 1 )[0];
|
|
lnk.INVALID = true;
|
|
lnk.nodeIn.linkOut = null;
|
|
lnk.nodeOut.linkIn = null;
|
|
}
|
|
}
|
|
|
|
// step 2: Match nodes according to their _intersectionID and merge them together
|
|
var len = graph.length;
|
|
while( len-- ){
|
|
node = graph[len].nodeIn;
|
|
if( node.type === INTERSECTION_NODE ){
|
|
var otherNode = null;
|
|
for (i = len - 1; i >= 0; i--) {
|
|
var tmpnode = graph[i].nodeIn;
|
|
if( tmpnode._intersectionID === node._intersectionID &&
|
|
tmpnode.uniqueID !== node.uniqueID ) {
|
|
otherNode = tmpnode;
|
|
break;
|
|
}
|
|
}
|
|
if( otherNode ) {
|
|
//Check if it is a self-intersecting Node
|
|
if( node.id === otherNode.id ){
|
|
// Swap the outgoing links, this will resolve a knot and create two paths,
|
|
// the portion of the original path on one side of a self crossing is counter-clockwise,
|
|
// so one of the resulting paths will also be counter-clockwise
|
|
var tmp = otherNode.linkOut;
|
|
otherNode.linkOut = node.linkOut;
|
|
node.linkOut = tmp;
|
|
tmp = otherNode.handleOut;
|
|
otherNode.handleOut = node.handleOut;
|
|
node.handleOut = tmp;
|
|
node.type = otherNode.type = NORMAL_NODE;
|
|
node._intersectionID = null;
|
|
node._segment = otherNode._segment = null;
|
|
} else {
|
|
// Merge the nodes together, by adding this node's information to the other node
|
|
otherNode.idB = node.id;
|
|
otherNode.isBaseContourB = node.isBaseContour;
|
|
otherNode.handleBIn = node.handleIn;
|
|
otherNode.handleBOut = node.handleOut;
|
|
otherNode.linkBIn = node.linkIn;
|
|
otherNode.linkBOut = node.linkOut;
|
|
otherNode._segment = null;
|
|
if( node.linkIn ){ node.linkIn.nodeOut = otherNode; }
|
|
if( node.linkOut ){ node.linkOut.nodeIn = otherNode; }
|
|
// Clear this node's intersectionID, so that we won't iterate over it again
|
|
node._intersectionID = null;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Final step: Retrieve the resulting paths from the graph
|
|
var boolResult = new CompoundPath();
|
|
var firstNode = true, nextNode, foundBasePath = false;
|
|
while( firstNode ){
|
|
firstNode = nextNode = null;
|
|
len = graph.length;
|
|
while( len-- ){
|
|
if( !graph[len].INVALID && !graph[len].nodeIn.visited && !firstNode ){
|
|
if( !foundBasePath && graph[len].isBaseContour === 1 ){
|
|
firstNode = graph[len].nodeIn;
|
|
foundBasePath = true;
|
|
break;
|
|
} else if(foundBasePath){
|
|
firstNode = graph[len].nodeIn;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( firstNode ){
|
|
var path = new Path();
|
|
path.add( firstNode.getSegment( true ) );
|
|
firstNode.visited = true;
|
|
nextNode = firstNode.linkOut.nodeOut;
|
|
while( firstNode.uniqueID !== nextNode.uniqueID ){
|
|
path.add( nextNode.getSegment( true ) );
|
|
nextNode.visited = true;
|
|
nextNode = nextNode.linkOut.nodeOut;
|
|
}
|
|
path.closed = true;
|
|
// path.clockwise = true;
|
|
boolResult.addChild( path );
|
|
}
|
|
}
|
|
boolResult = boolResult.reduce();
|
|
|
|
// Remove duplicate paths
|
|
path1.remove();
|
|
path2.remove();
|
|
|
|
return boolResult;
|
|
}
|
|
|
|
|
|
function markPoint( pnt, t, c, tc, remove ) {
|
|
if( !pnt ) return;
|
|
c = c || '#000';
|
|
if( remove === undefined ){ remove = true; }
|
|
var cir = new Path.Circle( pnt, 2 );
|
|
cir.style.fillColor = c;
|
|
cir.style.strokeColor = tc;
|
|
if( t !== undefined || t !== null ){
|
|
var text = new PointText( pnt.add([0, -3]) );
|
|
text.justification = 'center';
|
|
text.fillColor = c;
|
|
text.content = t;
|
|
if( remove ){
|
|
text.removeOnMove();
|
|
}
|
|
}
|
|
if( remove ) {
|
|
cir.removeOnMove();
|
|
}
|
|
}
|
|
|
|
// Same as the paperjs' Numerical class,
|
|
// added here because I can't access the original from this scope
|
|
var Numerical = {
|
|
TOLERANCE : 10e-6
|
|
};
|
|
|
|
// paperjs' Curve._addIntersections modified to return just intersection Point with a
|
|
// unique id.
|
|
paper.Curve._addIntersections = function(v1, v2, curve, locations) {
|
|
var bounds1 = Curve.getBounds(v1),
|
|
bounds2 = Curve.getBounds(v2);
|
|
if (bounds1.touches(bounds2)) {
|
|
// See if both curves are flat enough to be treated as lines.
|
|
if (Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE)
|
|
&& Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE)) {
|
|
// See if the parametric equations of the lines interesct.
|
|
var point = new Line(v1[0], v1[1], v1[6], v1[7], false)
|
|
.intersect(new Line(v2[0], v2[1], v2[6], v2[7], false),
|
|
// Filter out beginnings of the curves, to avoid
|
|
// duplicate solutions where curves join.
|
|
true, false);
|
|
if (point){
|
|
// Passing null for parameter leads to lazy determination of
|
|
// parameter values in CurveLocation#getParameter() only
|
|
// once they are requested.
|
|
var cl = new CurveLocation(curve, null, point);
|
|
cl.id = UNIQUE_ID++;
|
|
locations.push( cl );
|
|
}
|
|
} else {
|
|
// Subdivide both curves, and see if they intersect.
|
|
var v1s = Curve.subdivide(v1),
|
|
v2s = Curve.subdivide(v2);
|
|
for (var i = 0; i < 2; i++)
|
|
for (var j = 0; j < 2; j++)
|
|
this._addIntersections(v1s[i], v2s[j], curve, locations);
|
|
}
|
|
}
|
|
return locations;
|
|
};
|