paper.js/src/path/Curve.js
2015-10-01 08:49:26 -05:00

1898 lines
75 KiB
JavaScript

/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
* Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey
* http://scratchdisk.com/ & http://jonathanpuckey.com/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
/**
* @name Curve
*
* @class The Curve object represents the parts of a path that are connected by
* two following {@link Segment} objects. The curves of a path can be accessed
* through its {@link Path#curves} array.
*
* While a segment describe the anchor point and its incoming and outgoing
* handles, a Curve object describes the curve passing between two such
* segments. Curves and segments represent two different ways of looking at the
* same thing, but focusing on different aspects. Curves for example offer many
* convenient ways to work with parts of the path, finding lengths, positions or
* tangents at given offsets.
*/
var Curve = Base.extend(/** @lends Curve# */{
_class: 'Curve',
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @param {Segment} segment1
* @param {Segment} segment2
*/
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @param {Point} point1
* @param {Point} handle1
* @param {Point} handle2
* @param {Point} point2
*/
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @ignore
* @param {Number} x1
* @param {Number} y1
* @param {Number} handle1x
* @param {Number} handle1y
* @param {Number} handle2x
* @param {Number} handle2y
* @param {Number} x2
* @param {Number} y2
*/
initialize: function Curve(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
var count = arguments.length,
values,
seg1, seg2,
point1, point2,
handle1, handle2;
// The following code has to either set seg1 & seg2,
// or point1, point2, handle1 & handle2. At the end, the internal
// segments are created accordingly.
if (count === 3) {
// Undocumented internal constructor, used by Path#getCurves()
// new Segment(path, segment1, segment2);
this._path = arg0;
seg1 = arg1;
seg2 = arg2;
} else if (count === 0) {
seg1 = new Segment();
seg2 = new Segment();
} else if (count === 1) {
// new Segment(segment);
// Note: This copies from existing segments through bean getters
if ('segment1' in arg0) {
seg1 = new Segment(arg0.segment1);
seg2 = new Segment(arg0.segment2);
} else if ('point1' in arg0) {
// As printed by #toString()
point1 = arg0.point1;
handle1 = arg0.handle1;
handle2 = arg0.handle2;
point2 = arg0.point2;
} else if (Array.isArray(arg0)) {
// Convert getValues() array back to points and handles so we
// can create segments for those.
point1 = [arg0[0], arg0[1]];
point2 = [arg0[6], arg0[7]];
handle1 = [arg0[2] - arg0[0], arg0[3] - arg0[1]];
handle2 = [arg0[4] - arg0[6], arg0[5] - arg0[7]];
}
} else if (count === 2) {
// new Segment(segment1, segment2);
seg1 = new Segment(arg0);
seg2 = new Segment(arg1);
} else if (count === 4) {
point1 = arg0;
handle1 = arg1;
handle2 = arg2;
point2 = arg3;
} else if (count === 8) {
// Convert getValues() array from arguments list back to points and
// handles so we can create segments for those.
// NOTE: This could be merged with the above code after the array
// check through the `arguments` object, but it would break JS
// optimizations.
point1 = [arg0, arg1];
point2 = [arg6, arg7];
handle1 = [arg2 - arg0, arg3 - arg1];
handle2 = [arg4 - arg6, arg5 - arg7];
}
this._segment1 = seg1 || new Segment(point1, null, handle1);
this._segment2 = seg2 || new Segment(point2, handle2, null);
},
_serialize: function(options) {
// If it has no handles, only serialize points, otherwise handles too.
return Base.serialize(this.hasHandles()
? [this.getPoint1(), this.getHandle1(), this.getHandle2(),
this.getPoint2()]
: [this.getPoint1(), this.getPoint2()],
options, true);
},
_changed: function() {
// Clear cached values.
this._length = this._bounds = undefined;
},
/**
* Returns a copy of the curve.
*
* @return {Curve}
*/
clone: function() {
return new Curve(this._segment1, this._segment2);
},
/**
* @return {String} a string representation of the curve
*/
toString: function() {
var parts = [ 'point1: ' + this._segment1._point ];
if (!this._segment1._handleOut.isZero())
parts.push('handle1: ' + this._segment1._handleOut);
if (!this._segment2._handleIn.isZero())
parts.push('handle2: ' + this._segment2._handleIn);
parts.push('point2: ' + this._segment2._point);
return '{ ' + parts.join(', ') + ' }';
},
/**
* Removes the curve from the path that it belongs to, by removing its
* second segment and merging its handle with the first segment.
* @return {Boolean} {@true if the curve was removed}
*/
remove: function() {
var removed = false;
if (this._path) {
var segment2 = this._segment2,
handleOut = segment2._handleOut;
removed = segment2.remove();
if (removed)
this._segment1._handleOut.set(handleOut.x, handleOut.y);
}
return removed;
},
/**
* The first anchor point of the curve.
*
* @type Point
* @bean
*/
getPoint1: function() {
return this._segment1._point;
},
setPoint1: function(/* point */) {
var point = Point.read(arguments);
this._segment1._point.set(point.x, point.y);
},
/**
* The second anchor point of the curve.
*
* @type Point
* @bean
*/
getPoint2: function() {
return this._segment2._point;
},
setPoint2: function(/* point */) {
var point = Point.read(arguments);
this._segment2._point.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the first anchor point.
*
* @type Point
* @bean
*/
getHandle1: function() {
return this._segment1._handleOut;
},
setHandle1: function(/* point */) {
var point = Point.read(arguments);
this._segment1._handleOut.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the second anchor point.
*
* @type Point
* @bean
*/
getHandle2: function() {
return this._segment2._handleIn;
},
setHandle2: function(/* point */) {
var point = Point.read(arguments);
this._segment2._handleIn.set(point.x, point.y);
},
/**
* The first segment of the curve.
*
* @type Segment
* @bean
*/
getSegment1: function() {
return this._segment1;
},
/**
* The second segment of the curve.
*
* @type Segment
* @bean
*/
getSegment2: function() {
return this._segment2;
},
/**
* The path that the curve belongs to.
*
* @type Path
* @bean
*/
getPath: function() {
return this._path;
},
/**
* The index of the curve in the {@link Path#curves} array.
*
* @type Number
* @bean
*/
getIndex: function() {
return this._segment1._index;
},
/**
* The next curve in the {@link Path#curves} array that the curve
* belongs to.
*
* @type Curve
* @bean
*/
getNext: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index + 1]
|| this._path._closed && curves[0]) || null;
},
/**
* The previous curve in the {@link Path#curves} array that the curve
* belongs to.
*
* @type Curve
* @bean
*/
getPrevious: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index - 1]
|| this._path._closed && curves[curves.length - 1]) || null;
},
/**
* Checks if the this is the first curve in the {@link Path#curves} array.
*
* @return {Boolean} {@true if this is the first curve}
*/
isFirst: function() {
return this._segment1._index === 0;
},
/**
* Checks if the this is the last curve in the {@link Path#curves} array.
*
* @return {Boolean} {@true if this is the last curve}
*/
isLast: function() {
var path = this._path;
return path && this._segment1._index === path._curves.length - 1
|| false;
},
/**
* Specifies whether the points and handles of the curve are selected.
*
* @type Boolean
* @bean
*/
isSelected: function() {
return this.getPoint1().isSelected()
&& this.getHandle2().isSelected()
&& this.getHandle2().isSelected()
&& this.getPoint2().isSelected();
},
setSelected: function(selected) {
this.getPoint1().setSelected(selected);
this.getHandle1().setSelected(selected);
this.getHandle2().setSelected(selected);
this.getPoint2().setSelected(selected);
},
/**
* An array of 8 float values, describing this curve's geometry in four
* absolute x/y pairs (point1, handle1, handle2, point2). This format is
* used internally for efficient processing of curve geometries, e.g. when
* calculating intersections or bounds.
*
* Note that the handles are converted to absolute coordinates.
*
* @type Number[]
* @bean
*/
getValues: function(matrix) {
return Curve.getValues(this._segment1, this._segment2, matrix);
},
/**
* An array of 4 point objects, describing this curve's geometry in absolute
* coordinates (point1, handle1, handle2, point2).
*
* Note that the handles are converted to absolute coordinates.
*
* @type Point[]
* @bean
*/
getPoints: function() {
// Convert to array of absolute points
var coords = this.getValues(),
points = [];
for (var i = 0; i < 8; i += 2)
points.push(new Point(coords[i], coords[i + 1]));
return points;
},
/**
* The approximated length of the curve.
*
* @type Number
* @bean
*/
getLength: function() {
if (this._length == null)
this._length = Curve.getLength(this.getValues(), 0, 1);
return this._length;
},
/**
* The area that the curve's geometry is covering.
*
* @type Number
* @bean
*/
getArea: function() {
return Curve.getArea(this.getValues());
},
/**
* The total direction of the curve as a vector pointing from
* {@link #point1} to {@link #point2}.
*
* @type Point
* @bean
*/
getVector: function() {
return this._segment2._point.subtract(this._segment1._point);
},
getPart: function(from, to) {
return new Curve(Curve.getPart(this.getValues(), from, to));
},
// DOCS: Curve#getPartLength(from, to)
getPartLength: function(from, to) {
return Curve.getLength(this.getValues(), from, to);
},
/**
* Returns all intersections between two {@link Curve} objects as an array
* of {@link CurveLocation} objects.
*
* @param {Curve} curve the other curve to find the intersections with (if
* the curve itself or {@code null} is passed, the self intersection of the
* curve is returned, if it exists)
* @return {CurveLocation[]} the locations of all intersections between the
* curves
*/
getIntersections: function(curve) {
return Curve.getIntersections(this.getValues(),
curve && curve !== this ? curve.getValues() : null,
this, curve, [], {});
},
// TODO: adjustThroughPoint
/**
* Private method that handles all types of offset / isParameter pairs and
* converts it to a curve parameter.
*/
_getParameter: function(offset, isParameter) {
return isParameter
? offset
// Accept CurveLocation objects, and objects that act like
// them:
: offset && offset.curve === this
? offset.parameter
: offset === undefined && isParameter === undefined
? 0.5 // default is in the middle
: this.getParameterAt(offset, 0);
},
/**
* Divides the curve into two curves at the given offset. The curve itself
* is modified and becomes the first part, the second part is returned as a
* new curve. If the modified curve belongs to a path item, the second part
* is also added to the path.
*
* @name Curve#divide
* @function
* @param {Number} [offset=0.5] the offset on the curve at which to split,
* or the curve time parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Curve} the second part of the divided curve, if the offset
* is within the valid range, {code null} otherwise.
*/
// TODO: Rename to divideAt()?
divide: function(offset, isParameter, _setHandles) {
var parameter = this._getParameter(offset, isParameter),
tMin = /*#=*/Numerical.CURVETIME_EPSILON,
tMax = 1 - tMin,
res = null;
// Only divide if not at the beginning or end.
if (parameter >= tMin && parameter <= tMax) {
var parts = Curve.subdivide(this.getValues(), parameter),
left = parts[0],
right = parts[1],
setHandles = _setHandles || this.hasHandles(),
segment1 = this._segment1,
segment2 = this._segment2,
path = this._path;
if (setHandles) {
// Adjust the handles on the existing segments. The new segment
// will be inserted between the existing segment1 and segment2:
// Convert absolute -> relative
segment1._handleOut.set(left[2] - left[0],
left[3] - left[1]);
segment2._handleIn.set(right[4] - right[6],
right[5] - right[7]);
}
// Create the new segment:
var x = left[6], y = left[7],
segment = new Segment(new Point(x, y),
setHandles && new Point(left[4] - x, left[5] - y),
setHandles && new Point(right[2] - x, right[3] - y));
// Insert it in the segments list, if needed:
if (path) {
// By inserting at segment1.index + 1, we make sure to insert at
// the end if this curve is a closing curve of a closed path,
// as with segment2.index it would be inserted at 0.
path.insert(segment1._index + 1, segment);
// The newly inserted segment is the start of the next curve:
res = this.getNext();
} else {
// otherwise create it from the result of split
this._segment2 = segment;
res = new Curve(segment, segment2);
}
}
return res;
},
/**
* Splits the path this curve belongs to at the given offset. After
* splitting, the path will be open. If the path was open already, splitting
* will result in two paths.
*
* @name Curve#split
* @function
* @param {Number} [offset=0.5] the offset on the curve at which to split,
* or the curve time parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Path} the newly created path after splitting, if any
* @see Path#split(index, parameter)
*/
// TODO: Rename to splitAt()?
split: function(offset, isParameter) {
return this._path
? this._path.split(this._segment1._index,
this._getParameter(offset, isParameter))
: null;
},
/**
* Returns a reversed version of the curve, without modifying the curve
* itself.
*
* @return {Curve} a reversed version of the curve
*/
reversed: function() {
return new Curve(this._segment2.reversed(), this._segment1.reversed());
},
/**
* Clears the curve's handles by setting their coordinates to zero,
* turning the curve into a straight line.
*/
clearHandles: function() {
this._segment1._handleOut.set(0, 0);
this._segment2._handleIn.set(0, 0);
},
statics: {
getValues: function(segment1, segment2, matrix) {
var p1 = segment1._point,
h1 = segment1._handleOut,
h2 = segment2._handleIn,
p2 = segment2._point,
values = [
p1._x, p1._y,
p1._x + h1._x, p1._y + h1._y,
p2._x + h2._x, p2._y + h2._y,
p2._x, p2._y
];
if (matrix)
matrix._transformCoordinates(values, values, 4);
return values;
},
subdivide: function(v, t) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7];
if (t === undefined)
t = 0.5;
// Triangle computation, with loops unrolled.
var u = 1 - t,
// Interpolate from 4 to 3 points
p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y,
p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y,
p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y,
// Interpolate from 3 to 2 points
p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y,
p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y,
// Interpolate from 2 points to 1 point
p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y;
// We now have all the values we need to build the sub-curves:
return [
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
];
},
// Converts from the point coordinates (p1, c1, c2, p2) for one axis to
// the polynomial coefficients and solves the polynomial for val
solveCubic: function (v, coord, val, roots, min, max) {
var p1 = v[coord],
c1 = v[coord + 2],
c2 = v[coord + 4],
p2 = v[coord + 6],
c = 3 * (c1 - p1),
b = 3 * (c2 - c1) - c,
a = p2 - p1 - c - b;
return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max);
},
getParameterOf: function(v, x, y) {
// Handle beginnings and end separately, as they are not detected
// sometimes.
var epsilon = /*#=*/Numerical.GEOMETRIC_EPSILON,
abs = Math.abs;
if (abs(v[0] - x) < epsilon && abs(v[1] - y) < epsilon)
return 0;
if (abs(v[6] - x) < epsilon && abs(v[7] - y) < epsilon)
return 1;
var txs = [],
tys = [],
sx = Curve.solveCubic(v, 0, x, txs, 0, 1),
// Only solve for y if x actually has some solutions
sy = sx !== 0 ? Curve.solveCubic(v, 1, y, tys, 0, 1) : 0,
tx, ty;
// sx, sy === -1 means infinite solutions.
// sx === -1 && sy === -1 means the curve is a point and there really is
// an infinite number of solutions. Let's just return t = 0, as they are
// all valid and actually end up being the same position.
if (sx === -1 && sy === -1)
return 0;
// Loop through all solutions for x and match with solutions for y,
// to see if we either have a matching pair, or infinite solutions
// for one or the other.
for (var cx = 0; sx === -1 || cx < sx;) {
if (sx === -1 || (tx = txs[cx++]) > 0 && tx < 1) {
for (var cy = 0; sy === -1 || cy < sy;) {
if (sy === -1 || (ty = tys[cy++]) > 0 && ty < 1) {
// Handle infinite solutions by assigning root of
// the other polynomial
if (sx === -1) {
tx = ty;
} else if (sy === -1) {
ty = tx;
}
// Use average if we're within curve-time epsilon
if (abs(tx - ty) < /*#=*/Numerical.CURVETIME_EPSILON)
return (tx + ty) * 0.5;
}
}
// Avoid endless loops here: If sx is infinite and there was
// no fitting ty, there's no solution for this bezier
if (sx === -1)
break;
}
}
return null;
},
// TODO: Find better name
getPart: function(v, from, to) {
if (from > 0)
v = Curve.subdivide(v, from)[1]; // [1] right
// Interpolate the parameter at 'to' in the new curve and cut there.
if (to < 1)
v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left
return v;
},
hasHandles: function(v) {
var isZero = Numerical.isZero;
return !(isZero(v[0] - v[2]) && isZero(v[1] - v[3])
&& isZero(v[4] - v[6]) && isZero(v[5] - v[7]));
},
isFlatEnough: function(v, tolerance) {
// Thanks to Kaspar Fischer and Roger Willcocks for the following:
// http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ux = 3 * c1x - 2 * p1x - p2x,
uy = 3 * c1y - 2 * p1y - p2y,
vx = 3 * c2x - 2 * p2x - p1x,
vy = 3 * c2y - 2 * p2y - p1y;
return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy)
< 10 * tolerance * tolerance;
},
getArea: function(v) {
// This is a combination of the methods to decide if a path is clockwise
// and to calculate the area, as described here:
// http://objectmix.com/graphics/133553-area-closed-bezier-curve.html
// http://stackoverflow.com/questions/1165647
// We treat the curve points and handles as the outline of a polygon of
// which we determine the orientation using the method of calculating
// the sum over the edges. This will work even with non-convex polygons,
// telling you whether it's mostly clockwise.
// With bezier curves, the trick appears to be to calculate edge sum
// with half the handles' lengths, and then:
// area = 6 * edge-sum / 10
var p1x = v[0], p1y = v[1],
p2x = v[6], p2y = v[7],
h1x = (v[2] + p1x) / 2,
h1y = (v[3] + p1y) / 2,
h2x = (v[4] + v[6]) / 2,
h2y = (v[5] + v[7]) / 2;
return 6 * ((p1x - h1x) * (h1y + p1y)
+ (h1x - h2x) * (h2y + h1y)
+ (h2x - p2x) * (p2y + h2y)) / 10;
},
getBounds: function(v) {
var min = v.slice(0, 2), // Start with values of point1
max = min.slice(), // clone
roots = [0, 0];
for (var i = 0; i < 2; i++)
Curve._addBounds(v[i], v[i + 2], v[i + 4], v[i + 6],
i, 0, min, max, roots);
return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]);
},
/**
* Private helper for both Curve.getBounds() and Path.getBounds(), which
* finds the 0-crossings of the derivative of a bezier curve polynomial, to
* determine potential extremas when finding the bounds of a curve.
* Note: padding is only used for Path.getBounds().
*/
_addBounds: function(v0, v1, v2, v3, coord, padding, min, max, roots) {
// Code ported and further optimised from:
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
function add(value, padding) {
var left = value - padding,
right = value + padding;
if (left < min[coord])
min[coord] = left;
if (right > max[coord])
max[coord] = right;
}
// Calculate derivative of our bezier polynomial, divided by 3.
// Doing so allows for simpler calculations of a, b, c and leads to the
// same quadratic roots.
var a = 3 * (v1 - v2) - v0 + v3,
b = 2 * (v0 + v2) - 4 * v1,
c = v1 - v0,
count = Numerical.solveQuadratic(a, b, c, roots),
// Add some tolerance for good roots, as t = 0, 1 are added
// separately anyhow, and we don't want joins to be added with radii
// in getStrokeBounds()
tMin = /*#=*/Numerical.CURVETIME_EPSILON,
tMax = 1 - tMin;
// Only add strokeWidth to bounds for points which lie within 0 < t < 1
// The corner cases for cap and join are handled in getStrokeBounds()
add(v3, 0);
for (var i = 0; i < count; i++) {
var t = roots[i],
u = 1 - t;
// Test for good roots and only add to bounds if good.
if (tMin < t && t < tMax)
// Calculate bezier polynomial at t.
add(u * u * u * v0
+ 3 * u * u * t * v1
+ 3 * u * t * t * v2
+ t * t * t * v3,
padding);
}
}
}}, Base.each(
['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'],
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without
// the need to create a Curve object first, as required by the code that
// finds path interesections.
function(name) {
this[name] = function() {
if (!this._bounds)
this._bounds = {};
var bounds = this._bounds[name];
if (!bounds) {
// Calculate the curve bounds by passing a segment list for the
// curve to the static Path.get*Boudns methods.
var path = this._path;
bounds = this._bounds[name] = Path[name](
[this._segment1, this._segment2], false,
path && path.getStyle());
}
return bounds.clone();
};
},
/** @lends Curve# */{
/**
* {@grouptitle Bounding Boxes}
*
* The bounding rectangle of the curve excluding stroke width.
*
* @name Curve#bounds
* @type Rectangle
*/
/**
* The bounding rectangle of the curve including stroke width.
*
* @name Curve#strokeBounds
* @type Rectangle
*/
/**
* The bounding rectangle of the curve including handles.
*
* @name Curve#handleBounds
* @type Rectangle
*/
/**
* The rough bounding rectangle of the curve that is shure to include all of
* the drawing, including stroke width.
*
* @name Curve#roughBounds
* @type Rectangle
* @ignore
*/
}), Base.each({ // Injection scope for tests both as instance and static methods
isStraight: function(l, h1, h2) {
if (h1.isZero() && h2.isZero()) {
// No handles.
return true;
} else if (l.isZero()) {
// Zero-length line, with some handles defined.
return false;
} else if (h1.isCollinear(l) && h2.isCollinear(l)) {
// Collinear handles. Project them onto line to see if they are
// within the line's range:
var div = l.dot(l),
p1 = l.dot(h1) / div,
p2 = l.dot(h2) / div;
return p1 >= 0 && p1 <= 1 && p2 <= 0 && p2 >= -1;
}
return false;
},
isLinear: function(l, h1, h2) {
var third = l.divide(3);
return h1.equals(third) && h2.negate().equals(third);
}
}, function(test, name) {
// Produce the instance version that is called on curve object.
this[name] = function() {
var seg1 = this._segment1,
seg2 = this._segment2;
return test(seg2._point.subtract(seg1._point),
seg1._handleOut, seg2._handleIn);
};
// Produce the static version that handles a curve values array.
this.statics[name] = function(v) {
var p1x = v[0], p1y = v[1],
p2x = v[6], p2y = v[7];
return test(new Point(p2x - p1x, p2y - p1y),
new Point(v[2] - p1x, v[3] - p1y),
new Point(v[4] - p2x, v[5] - p2y));
};
}, /** @lends Curve# */{
statics: {}, // Filled in the Base.each loop above.
/**
* {@grouptitle Curve Tests}
*
* Checks if this curve has any curve handles set.
*
* @return {Boolean} {@true if the curve has handles set}
* @see Curve#handle1
* @see Curve#handle2
* @see Segment#hasHandles()
* @see Path#hasHandles()
*/
hasHandles: function() {
return !this._segment1._handleOut.isZero()
|| !this._segment2._handleIn.isZero();
},
/**
* Checks if this curve appears as a straight line. This can mean that
* it has no handles defined, or that the handles run collinear with the
* line that connects the curve's start and end point, not falling
* outside of the line.
*
* @name Curve#isStraight
* @function
* @return {Boolean} {@true if the curve is straight}
*/
/**
* Checks if this curve is parametrically linear, meaning that it is
* straight and its handles are positioned at 1/3 and 2/3 of the total
* length of the curve.
*
* @name Curve#isLinear
* @function
* @return {Boolean} {@true if the curve is parametrically linear}
*/
/**
* Checks if the the two curves describe straight lines that are
* collinear, meaning they run in parallel.
*
* @param {Curve} curve the other curve to check against
* @return {Boolean} {@true if the two lines are collinear}
*/
isCollinear: function(curve) {
return curve && this.isStraight() && curve.isStraight()
&& this.getVector().isCollinear(curve.getVector());
},
/**
* Checks if the curve is a straight horizontal line.
*
* @return {Boolean} {@true if the line is horizontal}
*/
isHorizontal: function() {
return this.isStraight() && Math.abs(this.getTangentAt(0.5, true).y)
< /*#=*/Numerical.GEOMETRIC_EPSILON;
},
/**
* Checks if the curve is a straight vertical line.
*
* @return {Boolean} {@true if the line is vertical}
*/
isVertical: function() {
return this.isStraight() && Math.abs(this.getTangentAt(0.5, true).x)
< /*#=*/Numerical.GEOMETRIC_EPSILON;
}
}), /** @lends Curve# */{
// Explicitly deactivate the creation of beans, as we have functions here
// that look like bean getters but actually read arguments.
// See #getParameterOf(), #getLocationOf(), #getNearestLocation(), ...
beans: false,
/**
* {@grouptitle Positions on Curves}
*
* Calculates the curve time parameter of the specified offset on the path,
* relative to the provided start parameter. If offset is a negative value,
* the parameter is searched to the left of the start parameter. If no start
* parameter is provided, a default of {@code 0} for positive values of
* {@code offset} and {@code 1} for negative values of {@code offset}.
*
* @param {Number} offset
* @param {Number} [start]
* @return {Number} the curve time parameter at the specified offset
*/
getParameterAt: function(offset, start) {
return Curve.getParameterAt(this.getValues(), offset, start);
},
/**
* Returns the curve time parameter of the specified point if it lies on the
* curve, {@code null} otherwise.
*
* @param {Point} point the point on the curve
* @return {Number} the curve time parameter of the specified point
*/
getParameterOf: function(/* point */) {
var point = Point.read(arguments);
return Curve.getParameterOf(this.getValues(), point.x, point.y);
},
/**
* Calculates the curve location at the specified offset or curve time
* parameter.
*
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {CurveLocation} the curve location at the specified the offset
*/
getLocationAt: function(offset, isParameter) {
var t = isParameter ? offset : this.getParameterAt(offset);
return t != null && t >= 0 && t <= 1
? new CurveLocation(this, t)
: null;
},
/**
* Returns the curve location of the specified point if it lies on the
* curve, {@code null} otherwise.
*
* @param {Point} point the point on the curve
* @return {CurveLocation} the curve location of the specified point
*/
getLocationOf: function(/* point */) {
return this.getLocationAt(this.getParameterOf(Point.read(arguments)),
true);
},
/**
* Returns the length of the path from its beginning up to up to the
* specified point if it lies on the path, {@code null} otherwise.
*
* @param {Point} point the point on the path
* @return {Number} the length of the path up to the specified point
*/
getOffsetOf: function(/* point */) {
var loc = this.getLocationOf.apply(this, arguments);
return loc ? loc.getOffset() : null;
},
/**
* Returns the nearest location on the curve to the specified point.
*
* @function
* @param {Point} point the point for which we search the nearest location
* @return {CurveLocation} the location on the curve that's the closest to
* the specified point
*/
getNearestLocation: function(/* point */) {
var point = Point.read(arguments),
values = this.getValues(),
count = 100,
minDist = Infinity,
minT = 0;
function refine(t) {
if (t >= 0 && t <= 1) {
var dist = point.getDistance(Curve.getPoint(values, t), true);
if (dist < minDist) {
minDist = dist;
minT = t;
return true;
}
}
}
for (var i = 0; i <= count; i++)
refine(i / count);
// Now iteratively refine solution until we reach desired precision.
var step = 1 / (count * 2);
while (step > /*#=*/Numerical.CURVETIME_EPSILON) {
if (!refine(minT - step) && !refine(minT + step))
step /= 2;
}
var pt = Curve.getPoint(values, minT);
return new CurveLocation(this, minT, pt, null, point.getDistance(pt));
},
/**
* Returns the nearest point on the curve to the specified point.
*
* @function
* @param {Point} point the point for which we search the nearest point
* @return {Point} the point on the curve that's the closest to the
* specified point
*/
getNearestPoint: function(/* point */) {
return this.getNearestLocation.apply(this, arguments).getPoint();
}
/**
* Calculates the point on the curve at the given offset.
*
* @name Curve#getPointAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Point} the point on the curve at the given offset
*/
/**
* Calculates the normalized tangent vector of the curve at the given
* offset.
*
* @name Curve#getTangentAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Point} the normalized tangent of the curve at the given offset
*/
/**
* Calculates the normal vector of the curve at the given offset.
*
* @name Curve#getNormalAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Point} the normal of the curve at the given offset
*/
/**
* Calculates the weighted tangent vector of the curve at the given
* offset, its length reflecting the curve velocity at that location.
*
* @name Curve#getWeightedTangentAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Point} the weighted tangent of the curve at the given offset
*/
/**
* Calculates the weighted normal vector of the curve at the given offset,
* its length reflecting the curve velocity at that location.
*
* @name Curve#getWeightedNormalAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Point} the weighted normal of the curve at the given offset
*/
/**
* Calculates the curvature of the curve at the given offset. Curvatures
* indicate how sharply a curve changes direction. A straight line has zero
* curvature, where as a circle has a constant curvature. The curve's radius
* at the given offset is the reciprocal value of its curvature.
*
* @name Curve#getCurvatureAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter
* @return {Number} the curvature of the curve at the given offset
*/
},
new function() { // // Scope to inject various curve evaluation methods
var methods = ['getPoint', 'getTangent', 'getNormal', 'getWeightedTangent',
'getWeightedNormal', 'getCurvature'];
return Base.each(methods,
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without
// the need to create a Curve object first, as required by the code that
// finds path intersections.
function(name) {
this[name + 'At'] = function(offset, isParameter) {
var values = this.getValues();
return Curve[name](values, isParameter ? offset
: Curve.getParameterAt(values, offset, 0));
};
}, {
statics: {
evaluateMethods: methods
}
})
},
new function() { // Scope for methods that require private functions
function getLengthIntegrand(v) {
// Calculate the coefficients of a Bezier derivative.
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
bx = 6 * (p1x + c2x) - 12 * c1x,
cx = 3 * (c1x - p1x),
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
by = 6 * (p1y + c2y) - 12 * c1y,
cy = 3 * (c1y - p1y);
return function(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
};
}
// Amount of integral evaluations for the interval 0 <= a < b <= 1
function getIterations(a, b) {
// Guess required precision based and size of range...
// TODO: There should be much better educated guesses for
// this. Also, what does this depend on? Required precision?
return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32)));
}
function evaluate(v, t, type, normalized) {
// Do not produce results if parameter is out of range or invalid.
if (t == null || t < 0 || t > 1)
return null;
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
tMin = /*#=*/Numerical.CURVETIME_EPSILON,
tMax = 1 - tMin,
x, y;
// Handle special case at beginning / end of curve
if (type === 0 && (t < tMin || t > tMax)) {
var isZero = t < tMin;
x = isZero ? p1x : p2x;
y = isZero ? p1y : p2y;
} else {
// Calculate the polynomial coefficients.
var cx = 3 * (c1x - p1x),
bx = 3 * (c2x - c1x) - cx,
ax = p2x - p1x - cx - bx,
cy = 3 * (c1y - p1y),
by = 3 * (c2y - c1y) - cy,
ay = p2y - p1y - cy - by;
if (type === 0) {
// Calculate the curve point at parameter value t
x = ((ax * t + bx) * t + cx) * t + p1x;
y = ((ay * t + by) * t + cy) * t + p1y;
} else {
// 1: tangent, 1st derivative
// 2: normal, 1st derivative
// 3: curvature, 1st derivative & 2nd derivative
// Simply use the derivation of the bezier function for both
// the x and y coordinates:
// Prevent tangents and normals of length 0:
// http://stackoverflow.com/questions/10506868/
if (t < tMin) {
x = cx;
y = cy;
} else if (t > tMax) {
x = 3 * (p2x - c2x);
y = 3 * (p2y - c2y);
} else {
x = (3 * ax * t + 2 * bx) * t + cx;
y = (3 * ay * t + 2 * by) * t + cy;
}
if (normalized) {
// When the tangent at t is zero and we're at the beginning
// or the end, we can use the vector between the handles,
// but only when normalizing as its weighted length is 0.
if (x === 0 && y === 0 && (t < tMin || t > tMax)) {
x = c2x - c1x;
y = c2y - c1y;
}
// Now normalize x & y
var len = Math.sqrt(x * x + y * y);
x /= len;
y /= len;
}
if (type === 3) {
// Calculate 2nd derivative, and curvature from there:
// http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
// k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
var x2 = 6 * ax * t + 2 * bx,
y2 = 6 * ay * t + 2 * by,
d = Math.pow(x * x + y * y, 3 / 2);
// For JS optimizations we always return a Point, although
// curvature is just a numeric value, stored in x:
x = d !== 0 ? (x * y2 - y * x2) / d : 0;
y = 0;
}
}
}
// The normal is simply the rotated tangent:
return type === 2 ? new Point(y, -x) : new Point(x, y);
}
return { statics: {
getLength: function(v, a, b) {
if (a === undefined)
a = 0;
if (b === undefined)
b = 1;
if (a === 0 && b === 1 && Curve.isStraight(v)) {
// The length of straight curves can be calculated more easily.
var dx = v[6] - v[0], // p2x - p1x
dy = v[7] - v[1]; // p2y - p1y
return Math.sqrt(dx * dx + dy * dy);
}
var ds = getLengthIntegrand(v);
return Numerical.integrate(ds, a, b, getIterations(a, b));
},
getParameterAt: function(v, offset, start) {
if (start === undefined)
start = offset < 0 ? 1 : 0
if (offset === 0)
return start;
// See if we're going forward or backward, and handle cases
// differently
var abs = Math.abs,
forward = offset > 0,
a = forward ? start : 0,
b = forward ? 1 : start,
// Use integrand to calculate both range length and part
// lengths in f(t) below.
ds = getLengthIntegrand(v),
// Get length of total range
rangeLength = Numerical.integrate(ds, a, b,
getIterations(a, b));
if (abs(offset - rangeLength) < /*#=*/Numerical.GEOMETRIC_EPSILON) {
// Matched the end:
return forward ? b : a;
} else if (abs(offset) > rangeLength) {
// We're out of bounds.
return null;
}
// Use offset / rangeLength for an initial guess for t, to
// bring us closer:
var guess = offset / rangeLength,
length = 0;
// Iteratively calculate curve range lengths, and add them up,
// using integration precision depending on the size of the
// range. This is much faster and also more precise than not
// modifying start and calculating total length each time.
function f(t) {
// When start > t, the integration returns a negative value.
length += Numerical.integrate(ds, start, t,
getIterations(start, t));
start = t;
return length - offset;
}
// Start with out initial guess for x.
// NOTE: guess is a negative value when not looking forward.
return Numerical.findRoot(f, ds, start + guess, a, b, 32,
/*#=*/Numerical.EPSILON);
},
getPoint: function(v, t) {
return evaluate(v, t, 0, false);
},
getTangent: function(v, t) {
return evaluate(v, t, 1, true);
},
getWeightedTangent: function(v, t) {
return evaluate(v, t, 1, false);
},
getNormal: function(v, t) {
return evaluate(v, t, 2, true);
},
getWeightedNormal: function(v, t) {
return evaluate(v, t, 2, false);
},
getCurvature: function(v, t) {
return evaluate(v, t, 3, false).x;
}
}};
},
new function() { // Scope for intersection using bezier fat-line clipping
function addLocation(locations, param, v1, c1, t1, p1, v2, c2, t2, p2,
overlap) {
var startConnected = param.startConnected,
endConnected = param.endConnected,
tMin = /*#=*/Numerical.CURVETIME_EPSILON,
tMax = 1 - tMin;
if (t1 == null)
t1 = Curve.getParameterOf(v1, p1.x, p1.y);
// Check t1 and t2 against correct bounds, based on start-/endConnected:
// - startConnected means the start of c1 connects to the end of c2
// - endConneted means the end of c1 connects to the start of c2
// - If either c1 or c2 are at the end of the path, exclude their end,
// which connects back to the beginning, but only if it's not part of
// a found overlap. The normal intersection will already be found at
// the beginning, and would be added twice otherwise.
if (t1 !== null && t1 >= (startConnected ? tMin : 0) &&
t1 <= (endConnected ? tMax : 1)) {
if (t2 == null)
t2 = Curve.getParameterOf(v2, p2.x, p2.y);
if (t2 !== null && t2 >= (endConnected ? tMin : 0) &&
t2 <= (startConnected ? tMax : 1)) {
// TODO: Don't we need to check the range of t2 as well? Does it
// also need startConnected / endConnected values?
var renormalize = param.renormalize;
if (renormalize) {
var res = renormalize(t1, t2);
t1 = res[0];
t2 = res[1];
}
var loc1 = new CurveLocation(c1, t1,
p1 || Curve.getPoint(v1, t1), overlap),
loc2 = new CurveLocation(c2, t2,
p2 || Curve.getPoint(v2, t2), overlap),
// For self-intersections, detect the case where the second
// curve wrapped around, and flip them so they can get
// matched to a potentially already existing intersection.
flip = loc1.getPath() === loc2.getPath()
&& loc1.getIndex() > loc2.getIndex(),
loc = flip ? loc2 : loc1,
include = param.include;
// Link the two locations to each other.
loc1._intersection = loc2;
loc2._intersection = loc1;
// TODO: Remove this once debug logging is removed.
(flip ? loc1 : loc2)._other = true;
if (!include || include(loc)) {
CurveLocation.add(locations, loc, true);
}
}
}
}
function addCurveIntersections(v1, v2, c1, c2, locations, param,
tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion) {
// Avoid deeper recursion.
// NOTE: @iconexperience determined that more than 20 recursions are
// needed sometimes, depending on the tDiff threshold values further
// below when determining which curve converges the least. He also
// recommended a threshold of 0.5 instead of the initial 0.8
// See: https://github.com/paperjs/paper.js/issues/565
if (++recursion >= 32)
return;
// Let P be the first curve and Q be the second
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7],
epsilon = /*#=*/Numerical.GEOMETRIC_EPSILON,
getSignedDistance = Line.getSignedDistance,
// Calculate the fat-line L for Q is the baseline l and two
// offsets which completely encloses the curve P.
d1 = getSignedDistance(q0x, q0y, q3x, q3y, v2[2], v2[3]) || 0,
d2 = getSignedDistance(q0x, q0y, q3x, q3y, v2[4], v2[5]) || 0,
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
dMin = factor * Math.min(0, d1, d2),
dMax = factor * Math.max(0, d1, d2),
tMinNew, tMaxNew,
tDiff;
if (q0x === q3x && uMax - uMin < epsilon && recursion >= 3) {
// The fat-line of Q has converged to a point, the clipping is not
// reliable. Return the value we have even though we will miss the
// precision.
tMaxNew = tMinNew = (tMax + tMin) / 2;
tDiff = 0;
} else {
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
// distance of P from the baseline l of the fat-line, ti is equally
// spaced in [0, 1]
var dp0 = getSignedDistance(q0x, q0y, q3x, q3y, v1[0], v1[1]),
dp1 = getSignedDistance(q0x, q0y, q3x, q3y, v1[2], v1[3]),
dp2 = getSignedDistance(q0x, q0y, q3x, q3y, v1[4], v1[5]),
dp3 = getSignedDistance(q0x, q0y, q3x, q3y, v1[6], v1[7]),
// Get the top and bottom parts of the convex-hull
hull = getConvexHull(dp0, dp1, dp2, dp3),
top = hull[0],
bottom = hull[1],
tMinClip, tMaxClip;
// Clip the convex-hull with dMin and dMax, taking into account that
// there will be no intersections if one of the tvalues are null.
if ((tMinClip = clipConvexHull(top, bottom, dMin, dMax)) == null ||
(tMaxClip = clipConvexHull(top.reverse(), bottom.reverse(),
dMin, dMax)) == null)
return;
// Clip P with the fat-line for Q
v1 = Curve.getPart(v1, tMinClip, tMaxClip);
tDiff = tMaxClip - tMinClip;
// tMin and tMax are within the range (0, 1). We need to project it
// to the original parameter range for v2.
tMinNew = tMax * tMinClip + tMin * (1 - tMinClip);
tMaxNew = tMax * tMaxClip + tMin * (1 - tMaxClip);
}
// Check if we need to subdivide the curves
if (oldTDiff > 0.5 && tDiff > 0.5) {
// Subdivide the curve which has converged the least.
if (tMaxNew - tMinNew > uMax - uMin) {
var parts = Curve.subdivide(v1, 0.5),
t = tMinNew + (tMaxNew - tMinNew) / 2;
addCurveIntersections(
v2, parts[0], c2, c1, locations, param,
uMin, uMax, tMinNew, t, tDiff, !reverse, recursion);
addCurveIntersections(
v2, parts[1], c2, c1, locations, param,
uMin, uMax, t, tMaxNew, tDiff, !reverse, recursion);
} else {
var parts = Curve.subdivide(v2, 0.5),
t = uMin + (uMax - uMin) / 2;
addCurveIntersections(
parts[0], v1, c2, c1, locations, param,
uMin, t, tMinNew, tMaxNew, tDiff, !reverse, recursion);
addCurveIntersections(
parts[1], v1, c2, c1, locations, param,
t, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
}
} else if (Math.max(uMax - uMin, tMaxNew - tMinNew) < epsilon) {
// We have isolated the intersection with sufficient precision
var t1 = tMinNew + (tMaxNew - tMinNew) / 2,
t2 = uMin + (uMax - uMin) / 2;
addLocation(locations, param,
reverse ? v2 : v1, reverse ? c2 : c1, reverse ? t2 : t1, null,
reverse ? v1 : v2, reverse ? c1 : c2, reverse ? t1 : t2, null);
} else if (tDiff > /*#=*/Numerical.EPSILON) { // Iterate
addCurveIntersections(v2, v1, c2, c1, locations, param,
uMin, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
}
}
/**
* Calculate the convex hull for the non-parametric bezier curve D(ti, di(t))
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
* curve are already sorted in the X axis in the increasing order.
* Calculating convex-hull is much easier than a set of arbitrary points.
*
* The convex-hull is returned as two parts [TOP, BOTTOM]:
* (both are in a coordinate space where y increases upwards with origin at
* bottom-left)
* TOP: The part that lies above the 'median' (line connecting end points of
* the curve)
* BOTTOM: The part that lies below the median.
*/
function getConvexHull(dq0, dq1, dq2, dq3) {
var p0 = [ 0, dq0 ],
p1 = [ 1 / 3, dq1 ],
p2 = [ 2 / 3, dq2 ],
p3 = [ 1, dq3 ],
// Find signed distance of p1 and p2 from line [ p0, p3 ]
getSignedDistance = Line.getSignedDistance,
dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2),
flip = false,
hull;
// Check if p1 and p2 are on the same side of the line [ p0, p3 ]
if (dist1 * dist2 < 0) {
// p1 and p2 lie on different sides of [ p0, p3 ]. The hull is a
// quadrilateral and line [ p0, p3 ] is NOT part of the hull so we
// are pretty much done here.
// The top part includes p1,
// we will reverse it later if that is not the case
hull = [[p0, p1, p3], [p0, p2, p3]];
flip = dist1 < 0;
} else {
// p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be
// a triangle or a quadrilateral and line [ p0, p3 ] is part of the
// hull. Check if the hull is a triangle or a quadrilateral.
// Also, if at least one of the distances for p1 or p2, from line
// [p0, p3] is zero then hull must at most have 3 vertices.
var pmax, cross = 0,
distZero = dist1 === 0 || dist2 === 0;
if (Math.abs(dist1) > Math.abs(dist2)) {
pmax = p1;
// apex is dq3 and the other apex point is dq0 vector dqapex ->
// dqapex2 or base vector which is already part of the hull.
cross = (dq3 - dq2 - (dq3 - dq0) / 3)
* (2 * (dq3 - dq2) - dq3 + dq1) / 3;
} else {
pmax = p2;
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex -> dqapex2 or base vector which is already part
// of the hull.
cross = (dq1 - dq0 + (dq0 - dq3) / 3)
* (-2 * (dq0 - dq1) + dq0 - dq2) / 3;
}
// Compare cross products of these vectors to determine if the point
// is in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral.
hull = cross < 0 || distZero
// p2 is inside the triangle, hull is a triangle.
? [[p0, pmax, p3], [p0, p3]]
// Convex hull is a quadrilateral and we need all lines in
// correct order where line [ p0, p3 ] is part of the hull.
: [[p0, p1, p2, p3], [p0, p3]];
flip = dist1 ? dist1 < 0 : dist2 < 0;
}
return flip ? hull.reverse() : hull;
}
/**
* Clips the convex-hull and returns [tMin, tMax] for the curve contained.
*/
function clipConvexHull(hullTop, hullBottom, dMin, dMax) {
if (hullTop[0][1] < dMin) {
// Left of hull is below dMin, walk through the hull until it
// enters the region between dMin and dMax
return clipConvexHullPart(hullTop, true, dMin);
} else if (hullBottom[0][1] > dMax) {
// Left of hull is above dMax, walk through the hull until it
// enters the region between dMin and dMax
return clipConvexHullPart(hullBottom, false, dMax);
} else {
// Left of hull is between dMin and dMax, no clipping possible
return hullTop[0][0];
}
}
function clipConvexHullPart(part, top, threshold) {
var px = part[0][0],
py = part[0][1];
for (var i = 1, l = part.length; i < l; i++) {
var qx = part[i][0],
qy = part[i][1];
if (top ? qy >= threshold : qy <= threshold)
return px + (threshold - py) * (qx - px) / (qy - py);
px = qx;
py = qy;
}
// All points of hull are above / below the threshold
return null;
}
/**
* Intersections between curve and line becomes rather simple here mostly
* because of Numerical class. We can rotate the curve and line so that the
* line is on the X axis, and solve the implicit equations for the X axis
* and the curve.
*/
function addCurveLineIntersections(v1, v2, c1, c2, locations, param) {
var flip = Curve.isStraight(v1),
vc = flip ? v2 : v1,
vl = flip ? v1 : v2,
lx1 = vl[0], ly1 = vl[1],
lx2 = vl[6], ly2 = vl[7],
// Rotate both curve and line around l1 so that line is on x axis.
ldx = lx2 - lx1,
ldy = ly2 - ly1,
// Calculate angle to the x-axis (1, 0).
angle = Math.atan2(-ldy, ldx),
sin = Math.sin(angle),
cos = Math.cos(angle),
// (rlx1, rly1) = (0, 0)
// Calculate the curve values of the rotated curve.
rvc = [];
for(var i = 0; i < 8; i += 2) {
var x = vc[i] - lx1,
y = vc[i + 1] - ly1;
rvc.push(
x * cos - y * sin,
x * sin + y * cos);
}
// Solve it for y = 0. We need to include t = 0, 1 and let addLocation()
// do the filtering, to catch important edge cases.
var roots = [],
count = Curve.solveCubic(rvc, 1, 0, roots, 0, 1);
// NOTE: count could be -1 for infinite solutions, but that should only
// happen with lines, in which case we should not be here.
for (var i = 0; i < count; i++) {
// For each found solution on the rotated curve, get the point on
// the real curve and with that the location on the line.
var tc = roots[i],
pc = Curve.getPoint(vc, tc),
tl = Curve.getParameterOf(vl, pc.x, pc.y);
if (tl !== null) {
var pl = Curve.getPoint(vl, tl),
t1 = flip ? tl : tc,
t2 = flip ? tc : tl;
// If the two curves are connected and the 2nd is very short,
// (l < Numerical.GEOMETRIC_EPSILON), we need to filter out an
// invalid intersection at the beginning of this short curve.
if (!param.endConnected || t2 > Numerical.CURVETIME_EPSILON) {
addLocation(locations, param,
v1, c1, t1, flip ? pl : pc,
v2, c2, t2, flip ? pc : pl);
}
}
}
}
function addLineIntersection(v1, v2, c1, c2, locations, param) {
var pt = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7]);
if (pt) {
addLocation(locations, param, v1, c1, null, pt, v2, c2, null, pt);
}
}
/**
* Code to detect overlaps of intersecting curves by @iconexperience:
* https://github.com/paperjs/paper.js/issues/648
*/
function addOverlap(v1, v2, c1, c2, locations, param) {
var abs = Math.abs,
timeEpsilon = /*#=*/Numerical.CURVETIME_EPSILON,
geomEpsilon = /*#=*/Numerical.GEOMETRIC_EPSILON,
straight1 = Curve.isStraight(v1),
straight2 = Curve.isStraight(v2),
straight = straight1 && straight2;
if (straight) {
// Linear curves can only overlap if they are collinear, which means
// they must be are collinear and any point of curve 1 must be on
// curve 2
var line1 = new Line(v1[0], v1[1], v1[6], v1[7]),
line2 = new Line(v2[0], v2[1], v2[6], v2[7]);
if (!line1.isCollinear(line2) || line1.getDistance(line2.getPoint())
> geomEpsilon)
return false;
} else if (straight1 ^ straight2) {
// If one curve is straight, the other curve must be straight, too,
// otherwise they cannot overlap.
return false;
}
var v = [v1, v2],
pairs = [];
// Iterate through all end points: First p1 and p2 of curve 1,
// then p1 and p2 of curve 2
for (var i = 0, t1 = 0;
i < 2 && pairs.length < 2;
i += t1 === 0 ? 0 : 1, t1 = t1 ^ 1) {
var t2 = Curve.getParameterOf(v[i ^ 1],
v[i][t1 === 0 ? 0 : 6],
v[i][t1 === 0 ? 1 : 7]);
if (t2 != null) { // If point is on curve
var pair = i === 0 ? [t1, t2] : [t2, t1];
if (pairs.length === 1 && pair[0] < pairs[0][0]) {
pairs.unshift(pair);
} else if (pairs.length === 0
// TODO: Compare distance of the actual points instead!
|| abs(pair[0] - pairs[0][0]) > timeEpsilon
|| abs(pair[1] - pairs[0][1]) > timeEpsilon) {
pairs.push(pair);
}
}
// If we checked 3 points but found no match, curves cannot overlap
if (i === 1 && pairs.length === 0)
return false;
}
// If we found 2 pairs, the end points of v1 & v2 should be the same.
// We only have to check if the handles are the same, too.
if (pairs.length === 2) {
// create values for overlapping part of each curve
var p1 = Curve.getPart(v[0], pairs[0][0], pairs[1][0]),
p2 = Curve.getPart(v[1], Math.min(pairs[0][1], pairs[1][1]),
Math.max(pairs[0][1], pairs[1][1]));
// Reverse values of second curve if necessary
if (pairs[0][1] > pairs[1][1]) {
p2 = [p2[6], p2[7], p2[4], p2[5], p2[2], p2[3], p2[0], p2[1]];
}
// Check if handles of overlapping paths are similar enough.
// We could do another check for curve identity here if we find a
// better criteria.
if (straight ||
abs(p2[2] - p1[2]) < geomEpsilon &&
abs(p2[3] - p1[3]) < geomEpsilon &&
abs(p2[4] - p1[4]) < geomEpsilon &&
abs(p2[5] - p1[5]) < geomEpsilon) {
// Overlapping parts are identical
addLocation(locations, param, v1, c1, pairs[0][0], null,
v2, c2, pairs[0][1], null, true),
addLocation(locations, param, v1, c1, pairs[1][0], null,
v2, c2, pairs[1][1], null, true);
return true;
}
}
return false;
}
return { statics: /** @lends Curve */{
getIntersections: function(v1, v2, c1, c2, locations, param) {
var c1p1x = v1[0], c1p1y = v1[1],
c1h1x = v1[2], c1h1y = v1[3],
c1h2x = v1[4], c1h2y = v1[5],
c1p2x = v1[6], c1p2y = v1[7];
// If v2 is not provided, search for self intersection on v1.
if (!v2) {
// Read a detailed description of the approach used to handle
// self-intersection, developed by @iconexperience here:
// https://github.com/paperjs/paper.js/issues/773#issuecomment-144018379
// Get the side of both control handles
var line = new Line(c1p1x, c1p1y, c1p2x, c1p2y, false),
side1 = line.getSide(c1h1x, c1h1y),
side2 = Line.getSide(c1h2x, c1h2y);
if (side1 === side2) {
var edgeSum = (c1p1x - c1h2x) * (c1h1y - c1p2y)
+ (c1h1x - c1p2x) * (c1h2y - c1p1y);
// If both handles are on the same side, the curve can only
// have a self intersection if the edge sum and the
// handles' sides have different signs. If the handles are
// on the left side, the edge sum must be negative for a
// self intersection (and vice-versa).
if (edgeSum * side1 > 0)
return locations;
}
// As a second condition we check if the curve has an inflection
// point. If an inflection point exists, the curve cannot have a
// self intersection.
var ax = c1p2x - 3 * c1h2x + 3 * c1h1x - c1p1x,
bx = c1h2x - 2 * c1h1x + c1p1x,
cx = c1h1x - c1p1x,
ay = c1p2y - 3 * c1h2y + 3 * c1h1y - c1p1y,
by = c1h2y - 2 * c1h1y + c1p1y,
cy = c1h1y - c1p1y,
// Condition for 1 or 2 inflection points:
// (ay*cx-ax*cy)^2 - 4*(ay*bx-ax*by)*(by*cx-bx*cy) >= 0
ac = ay * cx - ax * cy,
ab = ay * bx - ax * by,
bc = by * cx - bx * cy;
if (ac * ac - 4 * ab * bc < 0) {
// The curve has no inflection points, so it may have a self
// intersection. Find the right parameter at which to split
// the curve. We search for the parameter where the velocity
// has an extremum by finding the roots of the cross product
// between the bezier curve's first and second derivative.
var roots = [],
tSplit,
count = Numerical.solveCubic(
ax * ax + ay * ay,
3 * (ax * bx + ay * by),
2 * (bx * bx + by * by) + ax * cx + ay * cy,
bx * cx + by * cy,
roots, 0, 1);
if (count > 0) {
// Select extremum with highest curvature. This is
// always on the loop in case of a self intersection.
for (var i = 0, maxCurvature = 0; i < count; i++) {
var curvature = Math.abs(
c1.getCurvatureAt(roots[i], true));
if (curvature > maxCurvature) {
maxCurvature = curvature;
tSplit = roots[i];
}
}
// Divide the curve in two and then apply the normal
// curve intersection code.
var parts = Curve.subdivide(v1, tSplit);
// After splitting, the end is always connected:
param.endConnected = true;
// Since the curve was split above, we need to adjust
// the parameters for both locations.
param.renormalize = function(t1, t2) {
return [t1 * tSplit, t2 * (1 - tSplit) + tSplit];
};
Curve.getIntersections(parts[0], parts[1], c1, c1,
locations, param);
}
}
// We're done handling self-intersection, let's jump out.
return locations;
}
// Avoid checking curves if completely out of control bounds. As
// a little optimization, we can scale the handles with 0.75
// before calculating the control bounds and still be sure that
// the curve is fully contained.
var c2p1x = v2[0], c2p1y = v2[1],
c2p2x = v2[6], c2p2y = v2[7],
// 's' stands for scaled handles...
c1s1x = (3 * c1h1x + c1p1x) / 4,
c1s1y = (3 * c1h1y + c1p1y) / 4,
c1s2x = (3 * c1h2x + c1p2x) / 4,
c1s2y = (3 * c1h2y + c1p2y) / 4,
c2s1x = (3 * v2[2] + c2p1x) / 4,
c2s1y = (3 * v2[3] + c2p1y) / 4,
c2s2x = (3 * v2[4] + c2p2x) / 4,
c2s2y = (3 * v2[5] + c2p2y) / 4,
min = Math.min,
max = Math.max;
if (!(
max(c1p1x, c1s1x, c1s2x, c1p2x) >=
min(c2p1x, c2s1x, c2s2x, c2p2x) &&
min(c1p1x, c1s1x, c1s2x, c1p2x) <=
max(c2p1x, c2s1x, c2s2x, c2p2x) &&
max(c1p1y, c1s1y, c1s2y, c1p2y) >=
min(c2p1y, c2s1y, c2s2y, c2p2y) &&
min(c1p1y, c1s1y, c1s2y, c1p2y) <=
max(c2p1y, c2s1y, c2s2y, c2p2y)
)
// Also detect and handle overlaps:
|| !param.startConnected && !param.endConnected
&& addOverlap(v1, v2, c1, c2, locations, param))
return locations;
var straight1 = Curve.isStraight(v1),
straight2 = Curve.isStraight(v2),
c1p1 = new Point(c1p1x, c1p1y),
c1p2 = new Point(c1p2x, c1p2y),
c2p1 = new Point(c2p1x, c2p1y),
c2p2 = new Point(c2p2x, c2p2y),
// NOTE: Use smaller Numerical.EPSILON to compare beginnings and
// end points to avoid matching them on almost collinear lines.
epsilon = /*#=*/Numerical.EPSILON;
// Handle the special case where the first curve's stat-point
// overlaps with the second curve's start- or end-points.
if (c1p1.isClose(c2p1, epsilon))
addLocation(locations, param, v1, c1, 0, c1p1, v2, c2, 0, c2p1);
if (!param.startConnected && c1p1.isClose(c2p2, epsilon))
addLocation(locations, param, v1, c1, 0, c1p1, v2, c2, 1, c2p2);
// Determine the correct intersection method based on whether one or
// curves are straight lines:
(straight1 && straight2
? addLineIntersection
: straight1 || straight2
? addCurveLineIntersections
: addCurveIntersections)(
v1, v2, c1, c2, locations, param,
// Define the defaults for these parameters of
// addCurveIntersections():
// tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion
0, 1, 0, 1, 0, false, 0);
// Handle the special case where the first curve's end-point
// overlaps with the second curve's start- or end-points.
if (!param.endConnected && c1p2.isClose(c2p1, epsilon))
addLocation(locations, param, v1, c1, 1, c1p2, v2, c2, 0, c2p1);
if (c1p2.isClose(c2p2, epsilon))
addLocation(locations, param, v1, c1, 1, c1p2, v2, c2, 1, c2p2);
return locations;
}
}};
});