paper.js/fatline/Intersect.js
2013-05-24 17:27:56 -07:00

424 lines
17 KiB
JavaScript

var EPSILON = 10e-12;
var TOLERANCE = 10e-6;
var MAX_RECURSE = 20;
var MAX_ITERATE = 20;
/**
* This method is analogous to paperjs#PathItem.getIntersections
*/
paper.PathItem.prototype.getIntersections2 = function(path) {
// First check the bounds of the two paths. If they don't intersect,
// we don't need to iterate through their curves.
if (!this.getBounds().touches(path.getBounds()))
return [];
var locations = [],
curves1 = this.getCurves(),
curves2 = path.getCurves(),
length2 = curves2.length,
values2 = [], i;
for (var i = 0; i < length2; i++)
values2[i] = curves2[i].getValues();
for (var i = 0, l = curves1.length; i < l; i++) {
var curve1 = curves1[i],
values1 = curve1.getValues();
var v1Linear = Curve.isLinear(values1);
for (var j = 0; j < length2; j++) {
value2 = values2[j];
var v2Linear = Curve.isLinear(value2);
if (v1Linear && v2Linear) {
_getLineLineIntersection(values1, value2, curve1, curves2[j], locations);
} else if (v1Linear || v2Linear) {
_getCurveLineIntersection(values1, value2, curve1, curves2[j], locations);
} else {
Curve.getIntersections2(values1, value2, curve1, curves2[j], locations);
}
}
}
return locations;
};
/**
* This method is analogous to paperjs#Curve.getIntersections
* @param {[type]} v1
* @param {[type]} v2
* @param {[type]} curve1
* @param {[type]} curve2
* @param {[type]} locations
* @param {[type]} _v1t - Only used for recusion
* @param {[type]} _v2t - Only used for recusion
*/
paper.Curve.getIntersections2 = function(v1, v2, curve1, curve2, locations, _v1t, _v2t, _recurseDepth) {
_recurseDepth = _recurseDepth ? _recurseDepth + 1 : 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this, but
// so far endless recursion happens only when there is no real intersection and
// the infinite fatline continue to intersect with the other curve outside its bounds!
if (_recurseDepth > MAX_RECURSE) return;
// cache the original parameter range.
_v1t = _v1t || { t1: 0, t2: 1 };
_v2t = _v2t || { t1: 0, t2: 1 };
var v1t = { t1: _v1t.t1, t2: _v1t.t2 };
var v2t = { t1: _v2t.t1, t2: _v2t.t2 };
// Get the clipped parts from the original curve, to avoid cumulative errors
var _v1 = Curve.getPart(v1, v1t.t1, v1t.t2);
var _v2 = Curve.getPart(v2, v2t.t1, v2t.t2);
// markCurve(_v1, '#f0f', true);
// markCurve(_v2, '#0ff', false);
var nuT, parts, tmpt = { t1: null, t2: null }, iterate = 0;
// Loop until both parameter range converge. We have to handle the degenerate case
// seperately, where fat-line clipping can become numerically unstable when one of the
// curves has converged to a point and the other hasn't.
while (iterate < MAX_ITERATE &&
(Math.abs(v1t.t2 - v1t.t1) > TOLERANCE || Math.abs(v2t.t2 - v2t.t1) > TOLERANCE)) {
++iterate;
// First we clip v2 with v1's fat-line
tmpt.t1 = v2t.t1;
tmpt.t2 = v2t.t2;
var intersects1 = _clipBezierFatLine(_v1, _v2, tmpt),
intersects2 = 0;
// Stop if there are no possible intersections
if (intersects1 === 0) {
return;
} else if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid cumulative errors
// ...and reuse some objects.
v2t.t1 = tmpt.t1; v2t.t2 = tmpt.t2;
_v2 = Curve.getPart(v2, v2t.t1, v2t.t2);
// markCurve(_v2, '#0ff', false);
// Next we clip v1 with nuv2's fat-line
tmpt.t1 = v1t.t1; tmpt.t2 = v1t.t2;
intersects2 = _clipBezierFatLine(_v2, _v1, tmpt);
// Stop if there are no possible intersections
if (intersects2 === 0) {
return;
}else if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid cumulative errors
v1t.t1 = tmpt.t1; v1t.t2 = tmpt.t2;
_v1 = Curve.getPart(v1, v1t.t1, v1t.t2);
}
// markCurve(_v1, '#f0f', true);
}
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if (intersects1 < 0 || intersects2 < 0) {
// Subdivide the curve which has converged the least from the original range [0,1],
// which would be the curve with the largest parameter range after clipping
if (v1t.t2 - v1t.t1 > v2t.t2 - v2t.t1) {
// subdivide _v1 and recurse
nuT = (_v1t.t1 + _v1t.t2) / 2.0;
Curve.getIntersections2(v1, v2, curve1, curve2, locations, { t1: _v1t.t1, t2: nuT }, _v2t, _recurseDepth);
Curve.getIntersections2(v1, v2, curve1, curve2, locations, { t1: nuT, t2: _v1t.t2 }, _v2t, _recurseDepth);
return;
} else {
// subdivide _v2 and recurse
nuT = (_v2t.t1 + _v2t.t2) / 2.0;
Curve.getIntersections2(v1, v2, curve1, curve2, locations, _v1t, { t1: _v2t.t1, t2: nuT }, _recurseDepth);
Curve.getIntersections2(v1, v2, curve1, curve2, locations, _v1t, { t1: nuT, t2: _v2t.t2 }, _recurseDepth);
return;
}
}
// We need to bailout of clipping and try a numerically stable method if
// any of the following are true.
// 1. One of the parameter ranges is converged to a point.
// 2. Both of the parameter ranges have converged reasonably well (according to TOLERENCE).
// 3. One of the parameter range is converged enough so that it is *flat enough* to
// calculate line curve intersection implicitly.
//
// Check if one of the parameter range has converged completely to a point.
// Now things could get only worse if we iterate more for the other
// curve to converge if it hasn't yet happened so.
var v1Converged = (Math.abs(v1t.t2 - v1t.t1) < EPSILON),
v2Converged = (Math.abs(v2t.t2 - v2t.t1) < EPSILON);
if (v1Converged || v2Converged) {
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point))) {
var point = (v1Converged)? curve1.getPointAt(v1t.t1, true) : curve2.getPointAt(v2t.t1, true);
locations.push(new CurveLocation(curve1, null, point, curve2));
}
return;
}
// Check to see if both parameter ranges have converged or else,
// see if either or both of the curves are flat enough to be treated as lines
if (Math.abs(v1t.t2 - v1t.t1) <= TOLERANCE && Math.abs(v2t.t2 - v2t.t1) <= TOLERANCE) {
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
return;
} else {
var curve1Flat = Curve.isFlatEnough(_v1, TOLERANCE);
var curve2Flat = Curve.isFlatEnough(_v2, TOLERANCE);
if (curve1Flat && curve2Flat) {
_getLineLineIntersection(_v1, _v2, curve1, curve2, locations);
return;
} else if (curve1Flat || curve2Flat) {
// Use curve line intersection method while specifying which curve to be treated as line
_getCurveLineIntersection(_v1, _v2, curve1, curve2, locations, curve1Flat);
return;
}
}
}
};
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 - Section of the first curve, for which we will make a fat-line
* @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v1
* @param {Object} v2t - The parameter range of v2
* @return {number} -> 0 -no Intersection, 1 -one intersection, -1 -more than one intersection
*/
function _clipBezierFatLine(v1, v2, v2t) {
// first curve, P
var p0x = v1[0], p0y = v1[1], p3x = v1[6], p3y = v1[7];
var p1x = v1[2], p1y = v1[3], p2x = v1[4], p2y = v1[5];
// second curve, Q
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7];
var q1x = v2[2], q1y = v2[3], q2x = v2[4], q2y = v2[5];
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
var d1 = _getSignedDist(p0x, p0y, p3x, p3y, p1x, p1y) || 0;
var d2 = _getSignedDist(p0x, p0y, p3x, p3y, p2x, p2y) || 0;
var dmin, dmax;
if (d1 * d2 > 0) {
dmin = 3 / 4 * Math.min(0, d1, d2);
dmax = 3 / 4 * Math.max(0, d1, d2);
} else {
dmin = 4 / 9 * Math.min(0, d1, d2);
dmax = 4 / 9 * Math.max(0, d1, d2);
}
// Calculate non-parametric bezier curve D(ti, di(t)) -
// di(t) is the distance of Q from the baseline l of the fat-line,
// ti is equally spaced in [0,1]
var dq0 = _getSignedDist(p0x, p0y, p3x, p3y, q0x, q0y);
var dq1 = _getSignedDist(p0x, p0y, p3x, p3y, q1x, q1y);
var dq2 = _getSignedDist(p0x, p0y, p3x, p3y, q2x, q2y);
var dq3 = _getSignedDist(p0x, p0y, p3x, p3y, q3x, q3y);
// Find the minimum and maximum distances from l,
// this is useful for checking whether the curves intersect with each other or not.
var mindist = Math.min(dq0, dq1, dq2, dq3);
var maxdist = Math.max(dq0, dq1, dq2, dq3);
// If the fatlines don't overlap, we have no intersections!
if (dmin > maxdist || dmax < mindist) {
return 0;
}
var tmp;
if (dq3 < dq0) {
tmp = dmin; dmin = dmax; dmax = tmp;
}
var Dt = _convexhull(dq0, dq1, dq2, dq3);
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax):
// Portions of curve v2 before tmin and after tmax can safely be clipped away
var tmaxdmin = -Infinity, ixd, ixdx, i, len, inv_m;
var tmin = Infinity, tmax = -Infinity, Dtl, dtlx1, dtly1, dtlx2, dtly2;
for (i = 0, len = Dt.length; i < len; i++) {
Dtl = Dt[i];
dtlx1 = Dtl[0]; dtly1 = Dtl[1]; dtlx2 = Dtl[2]; dtly2 = Dtl[3];
if (dtly2 < dtly1) {
tmp = dtly2; dtly2 = dtly1; dtly1 = tmp;
tmp = dtlx2; dtlx2 = dtlx1; dtlx1 = tmp;
}
// we know that (dtlx2 - dtlx1) is never 0
inv_m = (dtly2 - dtly1) / (dtlx2 - dtlx1);
if (dmin >= dtly1 && dmin <= dtly2) {
ixdx = dtlx1 + (dmin - dtly1) / inv_m;
if (ixdx < tmin) tmin = ixdx;
if (ixdx > tmaxdmin) tmaxdmin = ixdx;
}
if (dmax >= dtly1 && dmax <= dtly2) {
ixdx = dtlx1 + (dmax - dtly1) / inv_m;
if (ixdx > tmax) tmax = ixdx;
if (ixdx < tmin) tmin = 0;
}
}
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
if (tmin !== Infinity && tmax !== -Infinity) {
var mindmin = Math.min(dmin, dmax);
var mindmax = Math.max(dmin, dmax);
if (dq3 > mindmin && dq3 < mindmax) {
tmax = 1;
}
if (dq0 > mindmin && dq0 < mindmax) {
tmin = 0;
}
if (tmaxdmin > tmax) { tmax = 1; }
// Debug: Plot the non-parametric graph and hull
// plotD_vs_t(500, 110, Dt, [dq0, dq1, dq2, dq3], v1, dmin, dmax, tmin, tmax, 1 / (tmax - tmin + 0.3))
// tmin and tmax are within the range (0, 1). We need to project it to the original
// parameter range for v2.
var v2tmin = v2t.t1;
var tdiff = (v2t.t2 - v2tmin);
v2t.t1 = v2tmin + tmin * tdiff;
v2t.t2 = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of the original range,
// possibly we have multiple intersections. We need to subdivide one of the curves.
if ((tdiff - (v2t.t2 - v2t.t1))/tdiff >= 0.2) {
return 1;
}
}
// TODO: Try checking with a perpendicular fatline to see if the curves overlap
// if it is any faster than this
if (Curve.getBounds(v1).touches(Curve.getBounds(v2))) {
return -1;
}
return 0;
}
/**
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the curve are
* already sorted in the X axis in the increasing order. Calculating convex-hull is
* much easier than a set of arbitrary points.
*/
function _convexhull(dq0, dq1, dq2, dq3) {
var distq1 = _getSignedDist(0, dq0, 1, dq3, 1 / 3, dq1);
var distq2 = _getSignedDist(0, dq0, 1, dq3, 2 / 3, dq2);
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3]
if (distq1 * distq2 < 0) {
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
// Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of the convexhull
// so we are pretty much done here.
Dt = [
[ 0, dq0, 1 / 3, dq1 ],
[ 1 / 3, dq1, 1, dq3 ],
[ 2 / 3, dq2, 0, dq0 ],
[ 1, dq3, 2 / 3, dq2 ]
];
} else {
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]
// Convexhull can be a triangle or a quadrilateral and
// line [0, q0, 1, q3] is part of the convexhull.
// Check if the hull is a triangle or a quadrilateral
var dqmin, dqmax, dqapex1, dqapex2;
distq1 = Math.abs(distq1);
distq2 = Math.abs(distq2);
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
if (distq1 > distq2) {
dqmin = [ 2 / 3, dq2 ];
dqmax = [ 1 / 3, dq1 ];
// apex is dq3 and the other apex point is dq0
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = 1;
vqa1a2y = dq3 - dq0;
// vector dqapex->dqmax
vqa1Maxx = 2 / 3;
vqa1Maxy = dq3 - dq1;
// vector dqapex->dqmin
vqa1Minx = 1 / 3;
vqa1Miny = dq3 - dq2;
} else {
dqmin = [ 1 / 3, dq1 ];
dqmax = [ 2 / 3, dq2 ];
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = -1;
vqa1a2y = dq0 - dq3;
// vector dqapex->dqmax
vqa1Maxx = -2 / 3;
vqa1Maxy = dq0 - dq2;
// vector dqapex->dqmin
vqa1Minx = -1 / 3;
vqa1Miny = dq0 - dq1;
}
// compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
if (vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0) {
// Point [2/3, dq2] is inside the triangle and the convex hull is a triangle
Dt = [
[ 0, dq0, dqmax[0], dqmax[1] ],
[ dqmax[0], dqmax[1], 1, dq3 ],
[ 1, dq3, 0, dq0 ]
];
} else {
// Convexhull is a quadrilateral and we need all lines in the correct order where
// line [0, q0, 1, q3] is part of the convex hull
Dt = [
[ 0, dq0, 1 / 3, dq1 ],
[ 1 / 3, dq1, 2 / 3, dq2 ],
[ 2 / 3, dq2, 1, dq3 ],
[ 1, dq3, 0, dq0 ]
];
}
}
return Dt;
}
// This is basically an "unrolled" version of #Line.getDistance() with sign
// May be a static method could be better!
var _getSignedDist = function(a1x, a1y, a2x, a2y, bx, by) {
var vx = a2x - a1x, vy = a2y - a1y;
var m = vy / vx, b = a1y - (m * a1x);
return (by - (m * bx) - b) / Math.sqrt(m*m + 1);
};
/**
* Intersections between curve and line becomes rather simple here mostly
* because of paperjs Numerical class. We can rotate the curve and line so that
* the line is on X axis, and solve the implicit equations for X axis and the curve
*/
var _getCurveLineIntersection = function(v1, v2, curve1, curve2, locations, _other) {
var i, root, point, vc = v1, vl = v2;
var other = _other === undefined ? Curve.isLinear(v1) : _other;
if (other) {
vl = v1;
vc = v2;
}
var l1x = vl[0], l1y = vl[1], l2x = vl[6], l2y = vl[7];
// rotate both the curve and line around l1 so that line is on x axis
var lvx = l2x - l1x, lvy = l2y - l1y;
// Angle with x axis (1, 0)
var angle = Math.atan2(-lvy, lvx),
sina = Math.sin(angle),
cosa = Math.cos(angle);
// rotated line and curve values
// (rl1x, rl1y) = (0, 0)
var rl2x = lvx * cosa - lvy * sina, rl2y = lvy * cosa + lvx * sina;
var rvc = [];
for(i=0; i<8; i+=2) {
var vcx = vc[i] - l1x, vcy = vc[i+1] - l1y;
rvc.push(vcx * cosa - vcy * sina);
rvc.push(vcy * cosa + vcx * sina);
}
var roots = [];
Curve.solveCubic(rvc, 1, 0, roots);
i = roots.length;
while (i--) {
root = roots[i];
if (root >= 0 && root <= 1) {
point = Curve.evaluate(rvc, root, true, 0);
// We do have a point on the infinite line. Check if it falls on the line *segment*.
if (point.x >= 0 && point.x <= rl2x) {
// The actual intersection point
point = Curve.evaluate(vc, root, true, 0);
if (other) root = null;
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
locations.push(new CurveLocation(curve1, root, point, curve2));
}
}
}
};
var _getLineLineIntersection = function(v1, v2, curve1, curve2, locations) {
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7], false);
if (point) {
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
// Passing null for parameter leads to lazy determination
// of parameter values in CurveLocation#getParameter()
// only once they are requested.
locations.push(new CurveLocation(curve1, null, point, curve2));
}
};