paper.js/src/path/CurveLocation.js
2015-12-31 18:32:56 +01:00

606 lines
23 KiB
JavaScript

/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
* Copyright (c) 2011 - 2016, Juerg Lehni & Jonathan Puckey
* http://scratchdisk.com/ & http://jonathanpuckey.com/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
/**
* @name CurveLocation
*
* @class CurveLocation objects describe a location on {@link Curve} objects, as
* defined by the curve-time {@link #parameter}, a value between `0`
* (beginning of the curve) and `1` (end of the curve). If the curve is part
* of a {@link Path} item, its {@link #index} inside the {@link Path#curves}
* array is also provided.
*
* The class is in use in many places, such as
* {@link Path#getLocationAt(offset)},
* {@link Path#getLocationOf(point)},
* {@link Path#getNearestLocation(point)},
* {@link PathItem#getIntersections(path)},
* etc.
*/
var CurveLocation = Base.extend(/** @lends CurveLocation# */{
_class: 'CurveLocation',
// Enforce creation of beans, as bean getters have hidden parameters.
// See #getSegment() below.
beans: true,
// DOCS: CurveLocation class description: add these back when the mentioned
// functioned have been added: {@link Path#split(location)}
/**
* Creates a new CurveLocation object.
*
* @param {Curve} curve
* @param {Number} parameter
* @param {Point} [point]
*/
initialize: function CurveLocation(curve, parameter, point,
_overlap, _distance) {
// Merge intersections very close to the end of a curve with the
// beginning of the next curve.
if (parameter > /*#=*/(1 - Numerical.CURVETIME_EPSILON)) {
var next = curve.getNext();
if (next) {
parameter = 0;
curve = next;
}
}
// Define this CurveLocation's unique id.
// NOTE: We do not use the same pool as the rest of the library here,
// since this is only required to be unique at runtime among other
// CurveLocation objects.
this._id = UID.get(CurveLocation);
this._setCurve(curve);
this._parameter = parameter;
this._point = point || curve.getPointAt(parameter, true);
this._overlap = _overlap;
this._distance = _distance;
this._intersection = this._next = this._prev = null;
},
_setCurve: function(curve) {
var path = curve._path;
this._version = path ? path._version : 0;
this._curve = curve;
this._segment = null; // To be determined, see #getSegment()
// Also store references to segment1 and segment2, in case path
// splitting / dividing is going to happen, in which case the segments
// can be used to determine the new curves, see #getCurve(true)
this._segment1 = curve._segment1;
this._segment2 = curve._segment2;
},
_setSegment: function(segment) {
this._setCurve(segment.getCurve());
this._segment = segment;
this._parameter = segment === this._segment1 ? 0 : 1;
// To avoid issues with imprecision in getCurve() / trySegment()
this._point = segment._point.clone();
},
/**
* The segment of the curve which is closer to the described location.
*
* @type Segment
* @bean
*/
getSegment: function() {
// Request curve first, so _segment gets invalidated if it's out of sync
var curve = this.getCurve(),
segment = this._segment;
if (!segment) {
var parameter = this.getParameter();
if (parameter === 0) {
segment = curve._segment1;
} else if (parameter === 1) {
segment = curve._segment2;
} else if (parameter != null) {
// Determine the closest segment by comparing curve lengths
segment = curve.getPartLength(0, parameter)
< curve.getPartLength(parameter, 1)
? curve._segment1
: curve._segment2;
}
this._segment = segment;
}
return segment;
},
/**
* The curve that this location belongs to.
*
* @type Curve
* @bean
*/
getCurve: function() {
var curve = this._curve,
path = curve && curve._path,
that = this;
if (path && path._version !== this._version) {
// If the path's segments have changed in the meantime, clear the
// internal _parameter value and force refetching of the correct
// curve again here.
curve = this._parameter = this._curve = this._offset = null;
}
// If path is out of sync, access current curve objects through segment1
// / segment2. Since path splitting or dividing might have happened in
// the meantime, try segment1's curve, and see if _point lies on it
// still, otherwise assume it's the curve before segment2.
function trySegment(segment) {
var curve = segment && segment.getCurve();
if (curve && (that._parameter = curve.getParameterOf(that._point))
!= null) {
// Fetch path again as it could be on a new one through split()
that._setCurve(curve);
that._segment = segment;
return curve;
}
}
return curve
|| trySegment(this._segment)
|| trySegment(this._segment1)
|| trySegment(this._segment2.getPrevious());
},
/**
* The path this curve belongs to, if any.
*
* @type Item
* @bean
*/
getPath: function() {
var curve = this.getCurve();
return curve && curve._path;
},
/**
* The index of the {@link #curve} within the {@link Path#curves} list, if
* it is part of a {@link Path} item.
*
* @type Index
* @bean
*/
getIndex: function() {
var curve = this.getCurve();
return curve && curve.getIndex();
},
/**
* The curve-time parameter, as used by various bezier curve calculations.
* It is value between `0` (beginning of the curve) and `1` (end of the
* curve).
*
* @type Number
* @bean
*/
getParameter: function() {
var curve = this.getCurve(),
parameter = this._parameter;
return curve && parameter == null
? this._parameter = curve.getParameterOf(this._point)
: parameter;
},
/**
* The point which is defined by the {@link #curve} and
* {@link #parameter}.
*
* @type Point
* @bean
*/
getPoint: function() {
return this._point;
},
/**
* The length of the path from its beginning up to the location described
* by this object. If the curve is not part of a path, then the length
* within the curve is returned instead.
*
* @type Number
* @bean
*/
getOffset: function() {
var offset = this._offset;
if (offset == null) {
offset = 0;
var path = this.getPath(),
index = this.getIndex();
if (path && index != null) {
var curves = path.getCurves();
for (var i = 0; i < index; i++)
offset += curves[i].getLength();
}
this._offset = offset += this.getCurveOffset();
}
return offset;
},
/**
* The length of the curve from its beginning up to the location described
* by this object.
*
* @type Number
* @bean
*/
getCurveOffset: function() {
var curve = this.getCurve(),
parameter = this.getParameter();
return parameter != null && curve && curve.getPartLength(0, parameter);
},
/**
* The curve location on the intersecting curve, if this location is the
* result of a call to {@link PathItem#getIntersections(path)} /
* {@link Curve#getIntersections(curve)}.
*
* @type CurveLocation
* @bean
*/
getIntersection: function() {
return this._intersection;
},
/**
* The tangential vector to the {@link #curve} at the given location.
*
* @name CurveLocation#getTangent
* @type Point
* @bean
*/
/**
* The normal vector to the {@link #curve} at the given location.
*
* @name CurveLocation#getNormal
* @type Point
* @bean
*/
/**
* The curvature of the {@link #curve} at the given location.
*
* @name CurveLocation#getCurvature
* @type Number
* @bean
*/
/**
* The distance from the queried point to the returned location.
*
* @type Number
* @bean
* @see Curve#getNearestLocation(point)
* @see Path#getNearestLocation(point)
*/
getDistance: function() {
return this._distance;
},
// DOCS: divide(), split()
divide: function() {
var curve = this.getCurve(),
res = null;
if (curve) {
res = curve.divide(this.getParameter(), true);
// Change to the newly inserted segment, also adjusting _parameter.
if (res)
this._setSegment(res._segment1);
}
return res;
},
split: function() {
var curve = this.getCurve();
return curve ? curve.split(this.getParameter(), true) : null;
},
/**
* Checks whether tow CurveLocation objects are describing the same location
* on a path, by applying the same tolerances as elsewhere when dealing with
* curve time parameters.
*
* @param {CurveLocation} location
* @return {Boolean} {@true if the locations are equal}
*/
equals: function(loc, _ignoreOther) {
var res = this === loc,
epsilon = /*#=*/Numerical.GEOMETRIC_EPSILON;
// NOTE: We need to compare both by (index + parameter) and by proximity
// of points. See:
// https://github.com/paperjs/paper.js/issues/784#issuecomment-143161586
if (!res && loc instanceof CurveLocation
&& this.getPath() === loc.getPath()
&& this.getPoint().isClose(loc.getPoint(), epsilon)) {
// The position is the same, but it could still be in a different
// location on the path. Perform more thorough checks now:
var c1 = this.getCurve(),
c2 = loc.getCurve(),
abs = Math.abs,
// We need to wrap diff around the path's beginning / end:
diff = abs(
((c1.isLast() && c2.isFirst() ? -1 : c1.getIndex())
+ this.getParameter()) -
((c2.isLast() && c1.isFirst() ? -1 : c2.getIndex())
+ loc.getParameter()));
res = (diff < /*#=*/Numerical.CURVETIME_EPSILON
// If diff isn't close enough, compare the actual offsets of
// both locations to determine if they're in the same spot,
// taking into account the wrapping around path ends too.
// This is necessary in order to handle very short consecutive
// curves (length ~< 1e-7), which would lead to diff > 1.
|| ((diff = abs(this.getOffset() - loc.getOffset())) < epsilon
|| abs(this.getPath().getLength() - diff) < epsilon))
&& (_ignoreOther
|| (!this._intersection && !loc._intersection
|| this._intersection && this._intersection.equals(
loc._intersection, true)));
}
return res;
},
/**
* @return {String} a string representation of the curve location
*/
toString: function() {
var parts = [],
point = this.getPoint(),
f = Formatter.instance;
if (point)
parts.push('point: ' + point);
var index = this.getIndex();
if (index != null)
parts.push('index: ' + index);
var parameter = this.getParameter();
if (parameter != null)
parts.push('parameter: ' + f.number(parameter));
if (this._distance != null)
parts.push('distance: ' + f.number(this._distance));
return '{ ' + parts.join(', ') + ' }';
},
/**
* {@grouptitle Tests}
* Checks if the location is an intersection with another curve and is
* merely touching the other curve, as opposed to crossing it.
*
* @return {Boolean} {@true if the location is an intersection that is
* merely touching another curve}
* @see #isCrossing()
*/
isTouching: function() {
var inter = this._intersection;
if (inter && this.getTangent().isCollinear(inter.getTangent())) {
// Only consider two straight curves as touching if their lines
// don't intersect.
var curve1 = this.getCurve(),
curve2 = inter.getCurve();
return !(curve1.isStraight() && curve2.isStraight()
&& curve1.getLine().intersect(curve2.getLine()));
}
return false;
},
/**
* Checks if the location is an intersection with another curve and is
* crossing the other curve, as opposed to just touching it.
*
* @return {Boolean} {@true if the location is an intersection that is
* crossing another curve}
* @see #isTouching()
*/
isCrossing: function() {
// Implementation loosely based on work by Andy Finnell:
// http://losingfight.com/blog/2011/07/09/how-to-implement-boolean-operations-on-bezier-paths-part-3/
// https://bitbucket.org/andyfinnell/vectorboolean
var inter = this._intersection;
if (!inter)
return false;
var t1 = this.getParameter(),
t2 = inter.getParameter(),
tMin = /*#=*/Numerical.CURVETIME_EPSILON,
tMax = 1 - tMin,
// t*Inside specifies if the found intersection is inside the curve.
t1Inside = t1 > tMin && t1 < tMax,
t2Inside = t2 > tMin && t2 < tMax;
// If the intersection is in the middle of both paths, it is either a
// tangent or a crossing, no need for the detailed corner check below:
if (t1Inside && t2Inside)
return !this.isTouching();
// Now get the references to the 4 curves involved in the intersection:
// - c1 & c2 are the curves on the first intersecting path, left and
// right of the intersection.
// - c3 & c4 are the same for the second intersecting path.
// - If the intersection is in the middle of the curve (t*Inside), then
// both values point to the same curve, and the curve-time is to be
// handled accordingly further down.
var c2 = this.getCurve(),
c1 = t1 <= tMin ? c2.getPrevious() : c2,
c4 = inter.getCurve(),
c3 = t2 <= tMin ? c4.getPrevious() : c4;
// If t1 / t2 are at the end, then step to the next curve.
if (t1 >= tMax)
c2 = c2.getNext();
if (t2 >= tMax)
c4 = c4.getNext();
if (!c1 || !c2 || !c3 || !c4)
return false;
// Before performing any detailed angle range checks, we need to handle
// a rare edge case where the intersection occurs in the middle of a
// straight curve with another straight curve that run almost parallel,
// in which case we want the outcome to be the same as if
// Line.intersect() was used (see addLineIntersection() in Curve).
if (t1Inside || t2Inside) {
// Pick the with the intersection inside:
var c = t1Inside ? c2 : c4;
if (c.isStraight()) {
// Now pick the other two potential intersecting curves,
// and check against each if they are straight:
var l = c.getLine(),
l1 = t1Inside ? c3 : c1,
l2 = t1Inside ? c4 : c2,
straight1 = l1.isStraight(),
straight2 = l2.isStraight();
if (straight1 || straight2) {
return straight1 && l.intersect(l1.getLine()) ||
straight2 && l.intersect(l2.getLine());
}
}
}
function isInRange(angle, min, max) {
return min < max
? angle > min && angle < max
// The range wraps around -180 / 180 degrees:
: angle > min && angle <= 180 || angle >= -180 && angle < max;
}
// Calculate angles for all four tangents at the intersection point,
// using values for getTangentAt() that are almost 0 and 1.
// NOTE: Even though getTangentAt() has code to support 0 and 1 instead
// of tMin and tMax, we still need to use tMin / tMaxx instead, as other
// issues emerge from switching to 0 and 1 in edge cases.
// NOTE: VectorBoolean has code that slowly shifts these points inwards
// until the resulting tangents are not ambiguous. Do we need this too?
// NOTE: We handle t*Inside here simply by picking t1 / t2 instead of
// tMin / tMax. E.g. if t1Inside is true, c1 will be the same as c2,
// and the code will doe the right thing.
// The incomings tangents v1 & v3 are inverted, so that all angles
// are pointing outwards in the right direction from the intersection.
var v2 = c2.getTangentAt(t1Inside ? t1 : tMin, true),
v1 = (t1Inside ? v2 : c1.getTangentAt(tMax, true)).negate(),
v4 = c4.getTangentAt(t2Inside ? t2 : tMin, true),
v3 = (t2Inside ? v4 : c3.getTangentAt(tMax, true)).negate(),
// NOTE: For shorter API calls we work with angles in degrees here:
a1 = v1.getAngle(),
a2 = v2.getAngle(),
a3 = v3.getAngle(),
a4 = v4.getAngle();
// Count how many times curve2 angles appear between the curve1 angles
// If each pair of angles split the other two, then the edges cross.
// Use t*Inside to decide which angle pair to check against.
// If t1 is inside the curve, check against a3 & a4, othrwise a1 & a2.
return !!(t1Inside
? (isInRange(a1, a3, a4) ^ isInRange(a2, a3, a4)) &&
(isInRange(a1, a4, a3) ^ isInRange(a2, a4, a3))
: (isInRange(a3, a1, a2) ^ isInRange(a4, a1, a2)) &&
(isInRange(a3, a2, a1) ^ isInRange(a4, a2, a1)));
},
/**
* Checks if the location is an intersection with another curve and is
* part of an overlap between the two involved paths.
*
* @return {Boolean} {@true if the location is an intersection that is
* part of an overlap between the two involved paths}
* @see #isCrossing()
* @see #isTouching()
*/
isOverlap: function() {
return !!this._overlap;
}
}, Base.each(Curve.evaluateMethods, function(name) {
// Produce getters for #getTangent() / #getNormal() / #getCurvature()
// NOTE: (For easier searching): This loop produces:
// getPointAt, getTangentAt, getNormalAt, getWeightedTangentAt,
// getWeightedNormalAt, getCurvatureAt
var get = name + 'At';
this[name] = function() {
var parameter = this.getParameter(),
curve = this.getCurve();
return parameter != null && curve && curve[get](parameter, true);
};
}, {
// Do not override the existing #getPoint():
preserve: true
}),
new function() { // Scope for statics
function insert(locations, loc, merge) {
// Insert-sort by path-id, curve, parameter so we can easily merge
// duplicates with calls to equals() after.
var length = locations.length,
l = 0,
r = length - 1;
function search(index, dir) {
// If we reach the beginning/end of the list, also compare with the
// location at the other end, as paths are circular lists.
// NOTE: When merging, the locations array will only contain
// locations on the same path, so it is fine that check for the end
// to address circularity. See PathItem#getIntersections()
for (var i = index + dir; i >= -1 && i <= length; i += dir) {
// Wrap the index around, to match the other ends:
var loc2 = locations[((i % length) + length) % length];
// Once we're outside the spot, we can stop searching.
if (!loc.getPoint().isClose(loc2.getPoint(),
/*#=*/Numerical.GEOMETRIC_EPSILON))
break;
if (loc.equals(loc2))
return loc2;
}
return null;
}
while (l <= r) {
var m = (l + r) >>> 1,
loc2 = locations[m],
found;
// See if the two locations are actually the same, and merge if
// they are. If they aren't check the other neighbors with search()
if (merge && (found = loc.equals(loc2) ? loc2
: (search(m, -1) || search(m, 1)))) {
// We're done, don't insert, merge with the found location
// instead, and carry over overlap:
if (loc._overlap) {
found._overlap = found._intersection._overlap = true;
}
return found;
}
var path1 = loc.getPath(),
path2 = loc2.getPath(),
// NOTE: equals() takes the intersection location into account,
// while this calculation of diff doesn't!
diff = path1 === path2
//Sort by both index and parameter. The two values added
// together provides a convenient sorting index.
? (loc.getIndex() + loc.getParameter())
- (loc2.getIndex() + loc2.getParameter())
// Sort by path id to group all locs on same path.
: path1._id - path2._id;
if (diff < 0) {
r = m - 1;
} else {
l = m + 1;
}
}
// We didn't merge with a preexisting location, insert it now.
locations.splice(l, 0, loc);
return loc;
}
return { statics: {
insert: insert,
expand: function(locations) {
// Create a copy since insert() keeps modifying the array and
// inserting at sorted indices.
var expanded = locations.slice();
for (var i = 0, l = locations.length; i < l; i++) {
insert(expanded, locations[i]._intersection, false);
}
return expanded;
}
}};
});