paper.js/fatline/Intersect.js

445 lines
16 KiB
JavaScript

new function() {
var MAX_RECURSION = 20;
var MAX_ITERATION = 20;
/**
* This method is analogous to paperjs#PathItem.getIntersections, but calls
* Curve.getIntersections2 instead.
*/
PathItem.prototype.getIntersections2 = function(path) {
// First check the bounds of the two paths. If they don't intersect,
// we don't need to iterate through their curves.
if (!this.getBounds().touches(path.getBounds()))
return [];
var locations = [],
curves1 = this.getCurves(),
curves2 = path.getCurves(),
length2 = curves2.length,
values2 = [];
for (var i = 0; i < length2; i++)
values2[i] = curves2[i].getValues();
for (var i = 0, l = curves1.length; i < l; i++) {
var curve1 = curves1[i],
values1 = curve1.getValues();
for (var j = 0; j < length2; j++)
Curve.getIntersections2(values1, values2[j], curve1, curves2[j],
locations);
}
return locations;
};
/**
* This method is analogous to paperjs#Curve.getIntersections
*/
Curve.getIntersections2 = function(v1, v2, curve1, curve2, locations) {
var linear1 = Curve.isLinear(v1),
linear2 = Curve.isLinear(v2);
// Determine the correct intersection method based on values of linear1 & 2:
(linear1 && linear2
? getLineLineIntersection
: linear1 || linear2
? getCurveLineIntersections
: getCurveIntersections)(v1, v2, curve1, curve2, locations);
return locations;
};
function addLocation(locations, curve1, parameter, point, curve2) {
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
locations.push(new CurveLocation(curve1, parameter, point, curve2));
}
function getCurveIntersections(v1, v2, curve1, curve2, locations, v1t, v2t,
recursion) {
// NOTE: v1t and v1t are only used for recusion
recursion = (recursion || 0) + 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this, but
// so far endless recursion happens only when there is no real intersection
// and the infinite fatline continue to intersect with the other curve
// outside its bounds!
if (recursion > MAX_RECURSION)
return;
// cache the original parameter range.
v1t = v1t || { t1: 0, t2: 1 };
v2t = v2t || { t1: 0, t2: 1 };
var _v1t = { t1: v1t.t1, t2: v1t.t2 };
var _v2t = { t1: v2t.t1, t2: v2t.t2 };
// Get the clipped parts from the original curve, to avoid cumulative errors
var _v1 = Curve.getPart(v1, _v1t.t1, _v1t.t2);
var _v2 = Curve.getPart(v2, _v2t.t1, _v2t.t2);
// markCurve(_v1, '#f0f', true);
// markCurve(_v2, '#0ff', false);
var tmpt = { t1: null, t2: null },
iteration = 0;
// Loop until both parameter range converge. We have to handle the
// degenerate case seperately, where fat-line clipping can become
// numerically unstable when one of the curves has converged to a point and
// the other hasn't.
while (iteration++ < MAX_ITERATION
&& (Math.abs(_v1t.t2 - _v1t.t1) > /*#=*/ Numerical.TOLERANCE
|| Math.abs(_v2t.t2 - _v2t.t1) > /*#=*/ Numerical.TOLERANCE)) {
// First we clip v2 with v1's fat-line
tmpt.t1 = _v2t.t1;
tmpt.t2 = _v2t.t2;
var intersects1 = clipFatLine(_v1, _v2, tmpt),
intersects2 = 0;
// Stop if there are no possible intersections
if (intersects1 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid cumulative
// errors ...and reuse some objects.
_v2t.t1 = tmpt.t1;
_v2t.t2 = tmpt.t2;
_v2 = Curve.getPart(v2, _v2t.t1, _v2t.t2);
// markCurve(_v2, '#0ff', false);
// Next we clip v1 with nuv2's fat-line
tmpt.t1 = _v1t.t1;
tmpt.t2 = _v1t.t2;
intersects2 = clipFatLine(_v2, _v1, tmpt);
// Stop if there are no possible intersections
if (intersects2 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid
// cumulative errors
_v1t.t1 = tmpt.t1;
_v1t.t2 = tmpt.t2;
_v1 = Curve.getPart(v1, _v1t.t1, _v1t.t2);
}
// markCurve(_v1, '#f0f', true);
}
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if (intersects1 < 0 || intersects2 < 0) {
// Subdivide the curve which has converged the least from the
// original range [0,1], which would be the curve with the largest
// parameter range after clipping
if (_v1t.t2 - _v1t.t1 > _v2t.t2 - _v2t.t1) {
// subdivide _v1 and recurse
var t = (v1t.t1 + v1t.t2) / 2;
getCurveIntersections(v1, v2, curve1, curve2, locations,
{ t1: v1t.t1, t2: t }, v2t, recursion);
getCurveIntersections(v1, v2, curve1, curve2, locations,
{ t1: t, t2: v1t.t2 }, v2t, recursion);
break;
} else {
// subdivide _v2 and recurse
var t = (v2t.t1 + v2t.t2) / 2;
getCurveIntersections(v1, v2, curve1, curve2, locations, v1t,
{ t1: v2t.t1, t2: t }, recursion);
getCurveIntersections(v1, v2, curve1, curve2, locations, v1t,
{ t1: t, t2: v2t.t2 }, recursion);
break;
}
}
// We need to bailout of clipping and try a numerically stable method if
// any of the following are true.
// 1. One of the parameter ranges is converged to a point.
// 2. Both of the parameter ranges have converged reasonably well
// (according to Numerical.TOLERANCE).
// 3. One of the parameter range is converged enough so that it is
// *flat enough* to calculate line curve intersection implicitly.
//
// Check if one of the parameter range has converged completely to a
// point. Now things could get only worse if we iterate more for the
// other curve to converge if it hasn't yet happened so.
var v1Converged = (Math.abs(_v1t.t2 - _v1t.t1) < /*#=*/ Numerical.EPSILON),
v2Converged = (Math.abs(_v2t.t2 - _v2t.t1) < /*#=*/ Numerical.EPSILON);
if (v1Converged || v2Converged) {
addLocation(locations, curve1, null, v1Converged
? curve1.getPointAt(_v1t.t1, true)
: curve2.getPointAt(_v2t.t1, true), curve2);
break;
}
if (Math.abs(_v1t.t2 - _v1t.t1) <= /*#=*/ Numerical.TOLERANCE
&& Math.abs(_v2t.t2 - _v2t.t1) <= /*#=*/ Numerical.TOLERANCE) {
// Both parameter ranges have converged.
addLocation(locations, curve1, _v1t.t1,
curve1.getPointAt(_v1t.t1, true), curve2);
break;
}
// see if either or both of the curves are flat enough to be treated
// as lines.
var curve1Flat = Curve.isFlatEnough(_v1, /*#=*/ Numerical.TOLERANCE),
curve2Flat = Curve.isFlatEnough(_v2, /*#=*/ Numerical.TOLERANCE);
if (curve1Flat && curve2Flat) {
getLineLineIntersection(_v1, _v2, curve1, curve2, locations);
break;
}
if (curve1Flat || curve2Flat) {
// Use curve line intersection method while specifying which
// curve to be treated as line
getCurveLineIntersections(_v1, _v2, curve1, curve2, locations,
curve1Flat);
break;
}
}
}
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 section of the first curve, for which we will make a
* fat-line
* @param {Array} v2 section of the second curve; we will clip this curve with
* the fat-line of v1
* @param {Object} v2t the parameter range of v2
* @return {Number} 0: no Intersection, 1: one intersection, -1: more than one
* ntersection
*/
function clipFatLine(v1, v2, v2t) {
// first curve, P
var p0x = v1[0], p0y = v1[1], p1x = v1[2], p1y = v1[3],
p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7],
// second curve, Q
q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3],
q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7],
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0,
d2 = getSignedDistance(p0x, p0y, p3x, p3y, p2x, p2y) || 0,
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
dmin = factor * Math.min(0, d1, d2),
dmax = factor * Math.max(0, d1, d2),
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
// distance of Q from the baseline l of the fat-line, ti is equally
// spaced in [0, 1]
dq0 = getSignedDistance(p0x, p0y, p3x, p3y, q0x, q0y),
dq1 = getSignedDistance(p0x, p0y, p3x, p3y, q1x, q1y),
dq2 = getSignedDistance(p0x, p0y, p3x, p3y, q2x, q2y),
dq3 = getSignedDistance(p0x, p0y, p3x, p3y, q3x, q3y),
// Find the minimum and maximum distances from l, this is useful for
// checking whether the curves intersect with each other or not.
mindist = Math.min(dq0, dq1, dq2, dq3),
maxdist = Math.max(dq0, dq1, dq2, dq3);
// If the fatlines don't overlap, we have no intersections!
if (dmin > maxdist || dmax < mindist)
return 0;
var tmp;
if (dq3 < dq0) {
tmp = dmin;
dmin = dmax;
dmax = tmp;
}
var Dt = getConvexHull(dq0, dq1, dq2, dq3);
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax): Portions of curve v2 before
// tmin and after tmax can safely be clipped away
var tmaxdmin = -Infinity, ixd, ixdx, i, len, inv_m;
var tmin = Infinity, tmax = -Infinity, Dtl, dtlx1, dtly1, dtlx2, dtly2;
for (i = 0, len = Dt.length; i < len; i++) {
Dtl = Dt[i];
dtlx1 = Dtl[0];
dtly1 = Dtl[1];
dtlx2 = Dtl[2];
dtly2 = Dtl[3];
if (dtly2 < dtly1) {
tmp = dtly2;
dtly2 = dtly1;
dtly1 = tmp;
tmp = dtlx2;
dtlx2 = dtlx1;
dtlx1 = tmp;
}
// we know that (dtlx2 - dtlx1) is never 0
inv_m = (dtly2 - dtly1) / (dtlx2 - dtlx1);
if (dmin >= dtly1 && dmin <= dtly2) {
ixdx = dtlx1 + (dmin - dtly1) / inv_m;
if (ixdx < tmin) tmin = ixdx;
if (ixdx > tmaxdmin) tmaxdmin = ixdx;
}
if (dmax >= dtly1 && dmax <= dtly2) {
ixdx = dtlx1 + (dmax - dtly1) / inv_m;
if (ixdx > tmax) tmax = ixdx;
if (ixdx < tmin) tmin = 0;
}
}
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
if (tmin !== Infinity && tmax !== -Infinity) {
var mindmin = Math.min(dmin, dmax);
var mindmax = Math.max(dmin, dmax);
if (dq3 > mindmin && dq3 < mindmax)
tmax = 1;
if (dq0 > mindmin && dq0 < mindmax)
tmin = 0;
if (tmaxdmin > tmax)
tmax = 1;
// tmin and tmax are within the range (0, 1). We need to project it to
// the original parameter range for v2.
var v2tmin = v2t.t1;
var tdiff = (v2t.t2 - v2tmin);
v2t.t1 = v2tmin + tmin * tdiff;
v2t.t2 = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of the
// original range, possibly we have multiple intersections. We need to
// subdivide one of the curves.
if ((tdiff - (v2t.t2 - v2t.t1)) / tdiff >= 0.2)
return 1;
}
// TODO: Try checking with a perpendicular fatline to see if the curves
// overlap if it is any faster than this
if (Curve.getBounds(v1).touches(Curve.getBounds(v2)))
return -1;
return 0;
}
/**
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
* curve are already sorted in the X axis in the increasing order. Calculating
* convex-hull is much easier than a set of arbitrary points.
*/
function getConvexHull(dq0, dq1, dq2, dq3) {
var distq1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1);
var distq2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2);
var hull;
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line
// [0,dq0, 1,dq3]
if (distq1 * distq2 < 0) {
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
// Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of
// the convexhull so we are pretty much done here.
hull = [
[ 0, dq0, 1 / 3, dq1 ],
[ 1 / 3, dq1, 1, dq3 ],
[ 2 / 3, dq2, 0, dq0 ],
[ 1, dq3, 2 / 3, dq2 ]
];
} else {
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]. c-hull can be a
// triangle or a quadrilateral and line [0, q0, 1, q3] is part of the
// c-hull. Check if the hull is a triangle or a quadrilateral
var dqmin, dqmax, dqapex1, dqapex2;
distq1 = Math.abs(distq1);
distq2 = Math.abs(distq2);
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
if (distq1 > distq2) {
dqmin = [ 2 / 3, dq2 ];
dqmax = [ 1 / 3, dq1 ];
// apex is dq3 and the other apex point is dq0 vector
// dqapex->dqapex2 or base vector which is already part of c-hull
vqa1a2x = 1;
vqa1a2y = dq3 - dq0;
// vector dqapex->dqmax
vqa1Maxx = 2 / 3;
vqa1Maxy = dq3 - dq1;
// vector dqapex->dqmin
vqa1Minx = 1 / 3;
vqa1Miny = dq3 - dq2;
} else {
dqmin = [ 1 / 3, dq1 ];
dqmax = [ 2 / 3, dq2 ];
// apex is dq0 in this case, and the other apex point is dq3 vector
// dqapex->dqapex2 or base vector which is already part of c-hull
vqa1a2x = -1;
vqa1a2y = dq0 - dq3;
// vector dqapex->dqmax
vqa1Maxx = -2 / 3;
vqa1Maxy = dq0 - dq2;
// vector dqapex->dqmin
vqa1Minx = -1 / 3;
vqa1Miny = dq0 - dq1;
}
// Compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
if (vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0) {
// Point [2/3, dq2] is inside the triangle and c-hull is a triangle
hull = [
[ 0, dq0, dqmax[0], dqmax[1] ],
[ dqmax[0], dqmax[1], 1, dq3 ],
[ 1, dq3, 0, dq0 ]
];
} else {
// Convexhull is a quadrilateral and we need all lines in the
// correct order where line [0, q0, 1, q3] is part of the c-hull
hull = [
[ 0, dq0, 1 / 3, dq1 ],
[ 1 / 3, dq1, 2 / 3, dq2 ],
[ 2 / 3, dq2, 1, dq3 ],
[ 1, dq3, 0, dq0 ]
];
}
}
return hull;
}
// This is basically an "unrolled" version of #Line.getDistance() with sign
// May be a static method could be better!
function getSignedDistance(a1x, a1y, a2x, a2y, bx, by) {
var m = (a2y - a1y) / (a2x - a1x),
b = a1y - (m * a1x);
return (by - (m * bx) - b) / Math.sqrt(m * m + 1);
}
/**
* Intersections between curve and line becomes rather simple here mostly
* because of Numerical class. We can rotate the curve and line so that the line
* is on X axis, and solve the implicit equations for X axis and the curve
*/
function getCurveLineIntersections(v1, v2, curve1, curve2, locations, flip) {
if (flip === undefined)
flip = Curve.isLinear(v1);
var vc = flip ? v2 : v1,
vl = flip ? v1 : v2,
l1x = vl[0], l1y = vl[1],
l2x = vl[6], l2y = vl[7],
// Rotate both the curve and line around l1 so that line is on x axis
lvx = l2x - l1x,
lvy = l2y - l1y,
// Angle with x axis (1, 0)
angle = Math.atan2(-lvy, lvx),
sin = Math.sin(angle),
cos = Math.cos(angle),
// (rl1x, rl1y) = (0, 0)
rl2x = lvx * cos - lvy * sin,
rl2y = lvy * cos + lvx * sin,
vcr = [];
for(var i = 0; i < 8; i += 2) {
var x = vc[i] - l1x,
y = vc[i + 1] - l1y;
vcr.push(
x * cos - y * sin,
y * cos + x * sin);
}
var roots = [],
count = Curve.solveCubic(vcr, 1, 0, roots);
// NOTE: count could theoretically be -1 for inifnite solutions, although
// that should only happen with lines, in which case we should not be here.
for (var i = 0; i < count; i++) {
var t = roots[i];
if (t >= 0 && t <= 1) {
var point = Curve.evaluate(vcr, t, true, 0);
// We do have a point on the infinite line. Check if it falls on the
// line *segment*.
if (point.x >= 0 && point.x <= rl2x)
addLocation(locations,
flip ? curve2 : curve1,
// The actual intersection point
t, Curve.evaluate(vc, t, true, 0),
flip ? curve1 : curve2);
}
}
}
function getLineLineIntersection(v1, v2, curve1, curve2, locations) {
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7], false);
// Passing null for parameter leads to lazy determination of parameter
// values in CurveLocation#getParameter() only once they are requested.
if (point)
addLocation(locations, curve1, null, point, curve2);
}
};