paper.js/fatline/Intersect.js
2013-05-11 01:50:34 +02:00

387 lines
18 KiB
JavaScript

var TOLERANCE = 10e-6;
var _tolerence = TOLERANCE;
function getIntersections2( path1, path2 ){
var locations = [];
return locations;
}
paper.Curve.getIntersections2 = function( v1, v2, curve1, curve2, locations, _v1t, _v2t ) {
// cache the original parameter range.
_v1t = _v1t || { t1: 0, t2: 1 };
_v2t = _v2t || { t1: 0, t2: 1 };
var v1t = { t1: _v1t.t1, t2: _v1t.t2 };
var v2t = { t1: _v2t.t1, t2: _v2t.t2 };
// Get the clipped parts from the original curve, to avoid cumulative errors
var _v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
var _v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
// markCurve( _v1, '#f0f', true );
// markCurve( _v2, '#0ff', false );
var nuT, parts, tmpt = { t1:null, t2:null };
// Loop until both parameter range converge. We have to handle the degenerate case
// seperately, where fat-line clipping can become numerically unstable when one of the
// curves has converged to a point and the other hasn't.
while( Math.abs(v1t.t2 - v1t.t1) > _tolerence || Math.abs(v2t.t2 - v2t.t1) > _tolerence ){
// while( !(v1t.t1 >= v1t.t2 - _tolerence && v1t.t1 <= v1t.t2 + _tolerence) ||
// !(v2t.t1 >= v2t.t2 - _tolerence && v2t.t1 <= v2t.t2 + _tolerence) ){
// First we clip v2 with v1's fat-line
tmpt.t1 = v2t.t1; tmpt.t2 = v2t.t2;
var intersects1 = _clipBezierFatLine( _v1, _v2, tmpt );
// Stop if there are no possible intersections
if( intersects1 === 0 ){
return;
} else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
v2t.t1 = tmpt.t1; v2t.t2 = tmpt.t2;
_v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
}
// markCurve( _v2, '#0ff', false );
// Next we clip v1 with nuv2's fat-line
tmpt.t1 = v1t.t1; tmpt.t2 = v1t.t2;
var intersects2 = _clipBezierFatLine( _v2, _v1, tmpt );
// Stop if there are no possible intersections
if( intersects2 === 0 ){
return;
}else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
v1t.t1 = tmpt.t1; v1t.t2 = tmpt.t2;
_v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
}
// markCurve( _v1, '#f0f', true );
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if( intersects1 < 0 || intersects2 < 0 ){
// Subdivide the curve which has converged the least from the original range [0,1],
// which would be the curve with the largest parameter range after clipping
if( v1t.t2 - v1t.t1 > v2t.t2 - v2t.t1 ){
// subdivide _v1 and recurse
nuT = ( _v1t.t1 + _v1t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: _v1t.t1, t2: nuT }, _v2t );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: nuT, t2: _v1t.t2 }, _v2t );
return;
} else {
// subdivide _v2 and recurse
nuT = ( _v2t.t1 + _v2t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: _v2t.t1, t2: nuT } );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: nuT, t2: _v2t.t2 } );
return;
}
}
// Check to see if both parameter ranges have converged or else,
// see if both curves are flat enough to be treated as lines, either
// because they have no control points at all, or are "flat enough"
// If the curve was flat in a previous iteration, we don't need to
// recalculate since it does not need further subdivision then.
if( Math.abs(v1t.t2 - v1t.t1) <= _tolerence && Math.abs(v2t.t2 - v2t.t1) <= _tolerence ){
locations.push(new CurveLocation(curve1, v1t.t1, null, curve2));
return;
} else {
//!code from: paperjs#Curve.getIntersections method
if ( Curve.isFlatEnough(_v1, _tolerence)
&& Curve.isFlatEnough(_v2, _tolerence) ) {
var point = Line.intersect(
_v1[0], _v1[1], _v1[6], _v1[7],
_v2[0], _v2[1], _v2[6], _v2[7], false);
if (point) {
// point = new Point( point );
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
// Passing null for parameter leads to lazy determination
// of parameter values in CurveLocation#getParameter()
// only once they are requested.
locations.push(new CurveLocation(curve1, null, point, curve2));
// This method can find only one intersection at a time and we just found it.
return;
}
}
}
}
};
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 - Section of the first curve, for which we will make a fat-line
* @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v1
* @param {Object} v2t - The parameter range of v2
* @return {number} -> 0 -no Intersection, 1 -one intersection, -1 -more than one intersection
*/
function _clipBezierFatLine( v1, v2, v2t ){
// first curve, P
var p0x = v1[0], p0y = v1[1], p3x = v1[6], p3y = v1[7];
var p1x = v1[2], p1y = v1[3], p2x = v1[4], p2y = v1[5];
// second curve, Q
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7];
var q1x = v2[2], q1y = v2[3], q2x = v2[4], q2y = v2[5];
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
var d1 = _getSignedDist( p0x, p0y, p3x, p3y, p1x, p1y );
var d2 = _getSignedDist( p0x, p0y, p3x, p3y, p2x, p2y );
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 0.4444444444444444 * Math.min( 0, d1, d2 );
dmax = 0.4444444444444444 * Math.max( 0, d1, d2 );
}
// Calculate non-parametric bezier curve D(ti, di(t)) -
// di(t) is the distance of Q from the baseline l of the fat-line,
// ti is equally spaced in [0,1]
var dq0 = _getSignedDist( p0x, p0y, p3x, p3y, q0x, q0y );
var dq1 = _getSignedDist( p0x, p0y, p3x, p3y, q1x, q1y );
var dq2 = _getSignedDist( p0x, p0y, p3x, p3y, q2x, q2y );
var dq3 = _getSignedDist( p0x, p0y, p3x, p3y, q3x, q3y );
// Find the minimum and maximum distances from l,
// this is useful for checking whether the curves intersect with each other or not.
var mindist = Math.min( dq0, dq1, dq2, dq3 );
var maxdist = Math.max( dq0, dq1, dq2, dq3 );
// If the fatlines don't overlap, we have no intersections!
if( dmin > maxdist || dmax < mindist ){
return 0;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
var Dt = _convexhull( dq0, dq1, dq2, dq3 );
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax):
// Portions of curve v2 before tmin and after tmax can safely be clipped away
// TODO: try to calculate tmin and tmax directly here
var tmindmin = Infinity, tmaxdmin = -Infinity,
tmindmax = Infinity, tmaxdmax = -Infinity, ixd, ixdx, i, len;
// var dmina = [0, dmin, 2, dmin];
// var dmaxa = [0, dmax, 2, dmax];
for (i = 0, len = Dt.length; i < len; i++) {
var Dtl = Dt[i];
// ixd = _intersectLines( Dtl, dmina);
ixd = Line.intersect( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmin, 2, dmin, false);
if( ixd ){
ixdx = ixd.x;
tmindmin = ( ixdx < tmindmin )? ixdx : tmindmin;
tmaxdmin = ( ixdx > tmaxdmin )? ixdx : tmaxdmin;
}
// ixd = _intersectLines( Dtl, dmaxa);
ixd = Line.intersect( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmax, 2, dmax, false);
if( ixd ){
ixdx = ixd.x;
tmindmax = ( ixdx < tmindmax )? ixdx : tmindmax;
tmaxdmax = ( ixdx > tmaxdmax )? ixdx : tmaxdmax;
}
}
// if dmin doesnot intersect with the convexhull, reset the parameter limits to 0
tmindmin = ( tmindmin === Infinity )? 0 : tmindmin;
tmaxdmin = ( tmaxdmin === -Infinity )? 0 : tmaxdmin;
// if dmax doesnot intersect with the convexhull, reset the parameter limits to 1
tmindmax = ( tmindmax === Infinity )? 1 : tmindmax;
tmaxdmax = ( tmaxdmax === -Infinity )? 1 : tmaxdmax;
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
var tmin, tmax;
if( dq3 > dq0 ){
tmin = Math.min( tmindmin, tmaxdmin );
tmax = Math.max( tmindmax, tmaxdmax );
if( Math.min( tmindmax, tmaxdmax ) < tmin )
tmin = 0;
if( Math.max( tmindmin, tmaxdmin ) > tmax )
tmax = 1;
}else{
tmax = Math.max( tmindmin, tmaxdmin );
tmin = Math.min( tmindmax, tmaxdmax );
if( Math.min( tmindmin, tmaxdmin ) < tmin )
tmin = 0;
if( Math.max( tmindmax, tmaxdmax ) > tmax )
tmax = 1;
}
// Debug: Plot the non-parametric graph and hull
// plotD_vs_t( 500, 110, Dt, [dq0, dq1, dq2, dq3], v1, dmin, dmax, tmin, tmax, 1.0 / ( tmax - tmin + 0.3 ) )
// tmin and tmax are within the range (0, 1). We need to project it to the original
// parameter range for v2.
var v2tmin = v2t.t1;
var tdiff = ( v2t.t2 - v2tmin );
v2t.t1 = v2tmin + tmin * tdiff;
v2t.t2 = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of the original range,
// possibly we have multiple intersections. We need to subdivide one of the curves.
if( (tdiff - ( v2t.t2 - v2t.t1 ))/tdiff < 0.2 ){
return -1;
}
return 1;
}
function _convexhull( dq0, dq1, dq2, dq3 ){
// Prepare the convex hull for D(ti, di(t))
var distq1 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.3333333333333333, dq1 );
var distq2 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.6666666666666666, dq2 );
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3]
if( distq1 * distq2 < 0 ) {
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
// Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of the convexhull
// so we are pretty much done here.
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 1.0, dq3 ],
[ 0.6666666666666666, dq2, 0.0, dq0 ],
[ 1.0, dq3, 0.6666666666666666, dq2 ]
];
} else {
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]
// Convexhull can be a triangle or a quadrilateral and
// line [0, q0, 1, q3] is part of the convexhull.
// Check if the hull is a triangle or a quadrilateral
var dqmin, dqmax, dqapex1, dqapex2;
distq1 = Math.abs(distq1);
distq2 = Math.abs(distq2);
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
if( distq1 > distq2 ){
dqmin = [ 0.6666666666666666, dq2 ];
dqmax = [ 0.3333333333333333, dq1 ];
// apex is dq3 and the other apex point is dq0
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = 1.0, vqa1a2y = dq3 - dq0;
// vector dqapex->dqmax
vqa1Maxx = 0.6666666666666666, vqa1Maxy = dq3 - dq1;
// vector dqapex->dqmin
vqa1Minx = 0.3333333333333333, vqa1Miny = dq3 - dq2;
} else {
dqmin = [ 0.3333333333333333, dq1 ];
dqmax = [ 0.6666666666666666, dq2 ];
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = -1.0, vqa1a2y = dq0 - dq3;
// vector dqapex->dqmax
vqa1Maxx = -0.6666666666666666, vqa1Maxy = dq0 - dq2;
// vector dqapex->dqmin
vqa1Minx = -0.3333333333333333, vqa1Miny = dq0 - dq1;
}
// compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var vcrossa1a2_a1Max = vqa1a2x * vqa1Maxy - vqa1a2y * vqa1Maxx;
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
if( vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0 ){
// Point [2/3, dq2] is inside the triangle and the convex hull is a triangle
Dt = [
[ 0.0, dq0, dqmax[0], dqmax[1] ],
[ dqmax[0], dqmax[1], 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
} else {
// Convexhull is a quadrilateral and we need all lines in the correct order where
// line [0, q0, 1, q3] is part of the convex hull
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 0.6666666666666666, dq2 ],
[ 0.6666666666666666, dq2, 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
}
}
return Dt;
}
function drawFatline( v1 ) {
function signum(num) {
return ( num > 0 )? 1 : ( num < 0 )? -1 : 0;
}
var l = new Line( [v1[0], v1[1]], [v1[6], v1[7]], false );
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
var d1 = l.getSide( p1 ) * l.getDistance( p1 );
var d2 = l.getSide( p2 ) * l.getDistance( p2 );
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
}
var ll = new Path.Line( v1[0], v1[1], v1[6], v1[7] );
window.__p3.push( ll );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9, 0.8);
var lp1 = ll.segments[0].point;
var lp2 = ll.segments[1].point;
var pm = l.vector, pm1 = pm.rotate( signum( dmin ) * -90 ), pm2 = pm.rotate( signum( dmax ) * -90 );
var p11 = lp1.add( pm1.normalize( Math.abs(dmin) ) );
var p12 = lp2.add( pm1.normalize( Math.abs(dmin) ) );
var p21 = lp1.add( pm2.normalize( Math.abs(dmax) ) );
var p22 = lp2.add( pm2.normalize( Math.abs(dmax) ) );
window.__p3.push( new Path.Line( p11, p12 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
window.__p3.push( new Path.Line( p21, p22 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
}
function plotD_vs_t( x, y, arr, arr2, v, dmin, dmax, tmin, tmax, yscale, tvalue ){
yscale = yscale || 1;
new Path.Line( x, y-100, x, y+100 ).style.strokeColor = '#aaa';
new Path.Line( x, y, x + 200, y ).style.strokeColor = '#aaa';
var clr = (tvalue)? '#a00' : '#00a';
if( window.__p3 ) window.__p3.map(function(a){a.remove();});
window.__p3 = [];
drawFatline( v );
window.__p3.push( new Path.Line( x, y + dmin * yscale, x + 200, y + dmin * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x, y + dmax * yscale, x + 200, y + dmax * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x + tmin * 190, y-100, x + tmin * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
window.__p3.push( new Path.Line( x + tmax * 190, y-100, x + tmax * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
for (var i = 0; i < arr.length; i++) {
window.__p3.push( new Path.Line( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ),
new Point( x + arr[i][2] * 190, y + arr[i][3] * yscale ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#999';
}
var pnt = [];
var arr2x = [ 0.0, 0.333333333, 0.6666666666, 1.0 ];
for (var i = 0; i < arr2.length; i++) {
pnt.push( new Point( x + arr2x[i] * 190, y + arr2[i] * yscale ) );
window.__p3.push( new Path.Circle( pnt[pnt.length-1], 2 ) );
window.__p3[window.__p3.length-1].style.fillColor = '#000'
}
// var pth = new Path( pnt[0], pnt[1], pnt[2], pnt[3] );
// pth.closed = true;
window.__p3.push( new Path( new Segment(pnt[0], null, pnt[1].subtract(pnt[0])), new Segment( pnt[3], pnt[2].subtract(pnt[3]), null ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
view.draw();
}
// This is basically an "unrolled" version of two methods from paperjs'
// Line class —#Line.getSide() and #Line.getDistance()
// If we create Point and Line objects, the code slows down significantly!
// May be a static method could be better!
var _getSignedDist = function( a1x, a1y, a2x, a2y, bx, by ){
var vx = a2x - a1x, vy = a2y - a1y;
var bax = bx - a1x, bay = by - a1y;
var ba2x = bx - a2x, ba2y = by - a2y;
// ba *cross* v
var cvb = bax * vy - bay * vx;
if (cvb === 0) {
cvb = bax * vx + bay * vy;
if (cvb > 0) {
cvb = (bax - vx) * vx + (bay -vy) * vy;
if (cvb < 0){ cvb = 0; }
}
}
var side = cvb < 0 ? -1 : cvb > 0 ? 1 : 0;
// Calculate the distance
var m = vy / vx, b = a1y - ( m * a1x );
var dist = Math.abs( by - ( m * bx ) - b ) / Math.sqrt( m*m + 1 );
var dista1 = Math.sqrt( bax * bax + bay * bay );
var dista2 = Math.sqrt( ba2x * ba2x + ba2y * ba2y );
return side * Math.min( dist, dista1, dista2 );
};