paper.js/src/path/Path.js
2011-02-22 10:25:18 +01:00

557 lines
15 KiB
JavaScript

Path = PathItem.extend({
beans: true,
initialize: function(/* segments */) {
this.base();
this.closed = false;
this._segments = [];
// Support both passing of segments as array or arguments
// If it is an array, it can also be a description of a point, so
// check its first entry for object as well
var segments = arguments[0];
if (!segments || !Array.isArray(segments)
|| typeof segments[0] != 'object')
segments = arguments;
for (var i = 0, l = segments.length; i < l; i++)
this.addSegment(new Segment(segments[i]));
},
/**
* The segments contained within the path.
*/
getSegments: function() {
return this._segments;
},
setSegments: function(segments) {
this._segments = segments;
},
// TODO: Consider adding getSubPath(a, b), returning a part of the current
// path, with the added benefit that b can be < a, and closed looping is
// taken into account.
/**
* The bounding rectangle of the item excluding stroke width.
*/
getBounds: function() {
// Code ported from:
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
var segments = this._segments;
var first = segments[0], prev = first;
if (!first)
return null;
var min = first.point.clone(), max = min.clone();
var coords = ['x', 'y'];
function processSegment(segment) {
for (var i = 0; i < 2; i++) {
var coord = coords[i];
var v0 = prev.point[coord],
v1 = v0 + prev.handleOut[coord],
v3 = segment.point[coord],
v2 = v3 + segment.handleIn[coord];
function bounds(value) {
if (value < min[coord]) {
min[coord] = value;
} else if (value > max[coord]) {
max[coord] = value;
}
}
bounds(v3);
function f(t) {
var omt = 1 - t;
return omt * omt * omt * v0
+ 3 * omt * omt * t * v1
+ 3 * omt * t * t * v2
+ t * t * t * v3;
}
// Calculate derivative of our bezier polynomial
var b = 6 * v0 - 12 * v1 + 6 * v2;
var a = -3 * v0 + 9 * v1 - 9 * v2 + 3 * v3;
var c = 3 * v1 - 3 * v0;
// Solve for derivative for quadratic roots. Each good root
// (meaning a solution 0 < t < 1) is an extrema in the cubic
// polynomial and thus a potential point defining the bounds
if (a == 0) {
if (b == 0)
continue;
var t = -c / b;
if (0 < t && t < 1)
bounds(f(t));
continue;
}
var b2ac = b * b - 4 * c * a;
if (b2ac < 0)
continue;
var t1 = (-b + Math.sqrt(b2ac)) / (2 * a);
if (0 < t1 && t1 < 1)
bounds(f(t1));
var t2 = (-b - Math.sqrt(b2ac)) / (2 * a);
if (0 < t2 && t2 < 1)
bounds(f(t2));
}
prev = segment;
}
for (var i = 1, l = segments.length; i < l; i++)
processSegment(segments[i]);
if (this.closed)
processSegment(first);
return new Rectangle(min.x, min.y, max.x - min.x , max.y - min.y);
},
transformContent: function(matrix, flags) {
var coords = new Array(6);
for (var i = 0, l = this._segments.length; i < l; i++) {
var segment = this._segments[i];
// Use matrix.transform version() that takes arrays of multiple
// points for largely improved performance, as no calls to
// Point.read() and Point constructors are necessary.
var point = segment.point;
var handleIn = segment.handleIn;
if (handleIn.isZero())
handleIn = null;
var handleOut = segment.handleOut;
if (handleOut.isZero())
handleOut = null;
var x = point.x, y = point.y;
coords[0] = x;
coords[1] = y;
var index = 2;
// We need to convert handles to absolute coordinates in order
// to transform them.
if (handleIn) {
coords[index++] = handleIn.x + x;
coords[index++] = handleIn.y + y;
}
if (handleOut) {
coords[index++] = handleOut.x + x;
coords[index++] = handleOut.y + y;
}
matrix.transform(coords, 0, coords, 0, index / 2);
x = point.x = coords[0];
y = point.y = coords[1];
index = 2;
if (handleIn) {
handleIn.x = coords[index++] - x;
handleIn.y = coords[index++] - y;
}
if (handleOut) {
handleOut.x = coords[index++] - x;
handleOut.y = coords[index++] - y;
}
}
},
addSegment: function(segment) {
segment.path = this;
this._segments.push(segment);
},
add: function() {
var segment = Segment.read(arguments);
if (segment)
this.addSegment(segment);
},
insert: function(index, segment) {
this._segments.splice(index, 0, new Segment(segment));
},
/**
* PostScript-style drawing commands
*/
/**
* Helper method that returns the current segment and checks if we need to
* execute a moveTo() command first.
*/
getCurrentSegment: function() {
if (this._segments.length == 0)
throw('Use a moveTo() command first');
return this._segments[this._segments.length - 1];
},
moveTo: function() {
var segment = Segment.read(arguments);
if (segment && !this._segments.length)
this.addSegment(segment);
},
lineTo: function() {
var segment = Segment.read(arguments);
if (segment && this._segments.length)
this.addSegment(segment);
},
/**
* Adds a cubic bezier curve to the path, defined by two handles and a to
* point.
*/
cubicCurveTo: function(handle1, handle2, to) {
// First modify the current segment:
var current = this.currentSegment;
// Convert to relative values:
current.handleOut = new Point(
handle1.x - current.point.x,
handle1.y - current.point.y);
// And add the new segment, with handleIn set to c2
this.addSegment(
new Segment(to, handle2.subtract(to), new Point())
);
},
/**
* Adds a quadratic bezier curve to the path, defined by a handle and a to
* point.
*/
quadraticCurveTo: function(handle, to) {
// This is exact:
// If we have the three quad points: A E D,
// and the cubic is A B C D,
// B = E + 1/3 (A - E)
// C = E + 1/3 (D - E)
var current = this.currentSegment;
var x1 = current.point.x;
var y1 = current.point.y;
this.cubicCurveTo(
handle.add(current.point.subtract(handle).multiply(1/3)),
handle.add(to.subtract(handle).multiply(1/3)),
to
);
},
curveTo: function(through, to, parameter) {
through = new Point(through);
to = new Point(to);
if (parameter == null)
parameter = 0.5;
var current = this.currentSegment.point;
// handle = (through - (1 - t)^2 * current - t^2 * to) / (2 * (1 - t) * t)
var t1 = 1 - parameter;
var handle = through.subtract(
current.multiply(t1 * t1)).subtract(
to.multiply(parameter * parameter)).divide(
2.0 * parameter * t1);
if (handle.isNaN())
throw new Error(
"Cannot put a curve through points with parameter="
+ parameter);
this.quadraticCurveTo(handle, to);
},
arcTo: function(to, clockwise) {
var through, to;
// Get the start point:
var current = this.currentSegment;
if (arguments[1] && typeof arguments[1] != 'boolean') {
through = new Point(arguments[0]);
to = new Point(arguments[1]);
} else {
if (clockwise === null)
clockwise = true;
var middle = current.point.add(to).divide(2);
var step = middle.subtract(current.point);
through = clockwise
? middle.subtract(-step.y, step.x)
: middle.add(-step.y, step.x);
}
var x1 = current.point.x, x2 = through.x, x3 = to.x;
var y1 = current.point.y, y2 = through.y, y3 = to.y;
var f = x3 * x3 - x3 * x2 - x1 * x3 + x1 * x2 + y3 * y3 - y3 * y2
- y1 * y3 + y1 * y2;
var g = x3 * y1 - x3 * y2 + x1 * y2 - x1 * y3 + x2 * y3 - x2 * y1;
var m = g == 0 ? 0 : f / g;
var c = (m * y2) - x2 - x1 - (m * y1);
var d = (m * x1) - y1 - y2 - (x2 * m);
var e = (x1 * x2) + (y1 * y2) - (m * x1 * y2) + (m * x2 * y1);
var centerX = -c / 2;
var centerY = -d / 2;
var radius = Math.sqrt(centerX * centerX + centerY * centerY - e);
// Note: reversing the Y equations negates the angle to adjust
// for the upside down coordinate system.
var angle = Math.atan2(centerY - y1, x1 - centerX);
var middle = Math.atan2(centerY - y2, x2 - centerX);
var extent = Math.atan2(centerY - y3, x3 - centerX);
var diff = middle - angle;
if (diff < -Math.PI)
diff += Math.PI * 2;
else if (diff > Math.PI)
diff -= Math.PI * 2;
extent -= angle;
if (extent <= 0.0)
extent += Math.PI * 2;
if (diff < 0) extent = Math.PI * 2 - extent;
else extent = -extent;
angle = -angle;
var ext = Math.abs(extent);
var arcSegs;
if (ext >= 2 * Math.PI) arcSegs = 4;
else arcSegs = Math.ceil(ext * 2 / Math.PI);
var inc = extent;
if (inc > 2 * Math.PI) inc = 2 * Math.PI;
else if (inc < -2 * Math.PI) inc = -2 * Math.PI;
inc /= arcSegs;
var halfInc = inc / 2;
var z = 4 / 3 * Math.sin(halfInc) / (1 + Math.cos(halfInc));
for (var i = 0; i <= arcSegs; i++) {
var relx = Math.cos(angle);
var rely = Math.sin(angle);
var pt = new Point(centerX + relx * radius,
centerY + rely * radius);
var out;
if (i == arcSegs) out = null;
else out = new Point(centerX + (relx - z * rely) * radius - pt.x,
centerY + (rely + z * relx) * radius - pt.y);
if (i == 0) {
// Modify startSegment
current.handleOut = out;
} else {
// Add new Segment
var inPoint = new Point(
centerX + (relx + z * rely) * radius - pt.x,
centerY + (rely - z * relx) * radius - pt.y);
this.addSegment(new Segment(pt, inPoint, out));
}
angle += inc;
}
},
lineBy: function() {
var vector = Point.read(arguments);
if (vector) {
var current = this.currentSegment;
this.lineTo(current.point.add(vector));
}
},
curveBy: function(throughVector, toVector, parameter) {
throughVector = Point.read(throughVector);
toVector = Point.read(toVector);
var current = this.currentSegment.point;
this.curveTo(current.add(throughVector), current.add(toVector), parameter);
},
arcBy: function(throughVector, toVector) {
throughVector = Point.read(throughVector);
toVector = Point.read(toVector);
var current = this.currentSegment.point;
this.arcBy(current.add(throughVector), current.add(toVector));
},
closePath: function() {
this.closed = ture;
},
draw: function(ctx, compound) {
if (!this.visible) return;
if (!compound)
ctx.beginPath();
var segments = this._segments;
var length = segments.length;
for (var i = 0; i < length; i++) {
var segment = segments[i];
var x = segment.point.x;
var y = segment.point.y;
var handleIn = segment.handleIn;
if (i == 0) {
ctx.moveTo(x, y);
} else {
if (handleOut.isZero() && handleIn.isZero()) {
ctx.lineTo(x, y);
} else {
ctx.bezierCurveTo(
outX, outY,
handleIn.x + x, handleIn.y + y,
x, y
);
}
}
var handleOut = segment.handleOut;
var outX = handleOut.x + x;
var outY = handleOut.y + y;
}
if (this.closed && length > 1) {
var segment = segments[0];
var x = segment.point.x;
var y = segment.point.y;
var handleIn = segment.handleIn;
ctx.bezierCurveTo(outX, outY, handleIn.x + x, handleIn.y + y, x, y);
ctx.closePath();
}
if (!compound) {
this.setCtxStyles(ctx);
ctx.save();
ctx.globalAlpha = this.opacity;
if (this.fillColor) {
ctx.fillStyle = this.fillColor.getCanvasStyle(ctx);
ctx.fill();
}
if (this.strokeColor) {
ctx.strokeStyle = this.strokeColor.getCanvasStyle(ctx);
ctx.stroke();
}
ctx.restore();
}
}
}, new function() { // inject methods that require scoped privates
/**
* Solves a tri-diagonal system for one of coordinates (x or y) of first
* bezier control points.
*
* @param rhs right hand side vector.
* @return Solution vector.
*/
var getFirstControlPoints = function(rhs) {
var n = rhs.length;
var x = []; // Solution vector.
var tmp = []; // Temporary workspace.
var b = 2;
x[0] = rhs[0] / b;
// Decomposition and forward substitution.
for (var i = 1; i < n; i++) {
tmp[i] = 1 / b;
b = (i < n - 1 ? 4.0 : 2.0) - tmp[i];
x[i] = (rhs[i] - x[i - 1]) / b;
}
// Back-substitution.
for (var i = 1; i < n; i++) {
x[n - i - 1] -= tmp[n - i] * x[n - i];
}
return x;
};
var styleNames = {
strokeWidth: 'lineWidth',
strokeJoin: 'lineJoin',
strokeCap: 'lineCap',
miterLimit: 'miterLimit'
};
return {
smooth: function() {
var segments = this._segments;
// This code is based on the work by Oleg V. Polikarpotchkin,
// http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry
// It was extended to support closed paths by averaging overlapping
// beginnings and ends. The result of this approach is very close to
// Polikarpotchkin's closed curve solution, but reuses the same
// algorithm as for open paths, and is probably executing faster as
// well, so it is preferred.
var size = segments.length;
if (size <= 2)
return;
var n = size;
// Add overlapping ends for averaging handles in closed paths
var overlap;
if (this.closed) {
// Overlap up to 4 points since averaging beziers affect the 4
// neighboring points
overlap = Math.min(size, 4);
n += Math.min(size, overlap) * 2;
} else {
overlap = 0;
}
var knots = [];
for (var i = 0; i < size; i++)
knots[i + overlap] = segments[i].point;
if (this.closed) {
// If we're averaging, add the 4 last points again at the
// beginning, and the 4 first ones at the end.
for (var i = 0; i < overlap; i++) {
knots[i] = segments[i + size - overlap].point;
knots[i + size + overlap] = segments[i].point;
}
} else {
n--;
}
// Calculate first Bezier control points
// Right hand side vector
var rhs = [];
// Set right hand side X values
for (var i = 1; i < n - 1; i++)
rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x;
rhs[0] = knots[0].x + 2 * knots[1].x;
rhs[n - 1] = 3 * knots[n - 1].x;
// Get first control points X-values
var x = getFirstControlPoints(rhs);
// Set right hand side Y values
for (var i = 1; i < n - 1; i++)
rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y;
rhs[0] = knots[0].y + 2 * knots[1].y;
rhs[n - 1] = 3 * knots[n - 1].y;
// Get first control points Y-values
var y = getFirstControlPoints(rhs);
if (this.closed) {
// Do the actual averaging simply by linearly fading between the
// overlapping values.
for (var i = 0, j = size; i < overlap; i++, j++) {
var f1 = (i / overlap);
var f2 = 1 - f1;
// Beginning
x[j] = x[i] * f1 + x[j] * f2;
y[j] = y[i] * f1 + y[j] * f2;
// End
var ie = i + overlap, je = j + overlap;
x[je] = x[ie] * f2 + x[je] * f1;
y[je] = y[ie] * f2 + y[je] * f1;
}
n--;
}
var handleIn = null;
// Now set the calculated handles
for (var i = overlap; i <= n - overlap; i++) {
var segment = segments[i - overlap];
if (handleIn != null)
segment.handleIn = handleIn.subtract(segment.point);
if (i < n) {
segment.handleOut =
new Point(x[i], y[i]).subtract(segment.point);
if (i < n - 1)
handleIn = new Point(
2 * knots[i + 1].x - x[i + 1],
2 * knots[i + 1].y - y[i + 1]);
else
handleIn = new Point(
(knots[n].x + x[n - 1]) / 2,
(knots[n].y + y[n - 1]) / 2);
}
}
if (closed && handleIn != null) {
var segment = this._segments[0];
segment.handleIn = handleIn.subtract(segment.point);
}
},
setCtxStyles: function(ctx) {
for (var i in styleNames) {
var style;
if (style = this[i])
ctx[styleNames[i]] = style;
}
}
};
});