mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-22 23:39:59 -05:00
339 lines
12 KiB
JavaScript
339 lines
12 KiB
JavaScript
|
|
|
|
/*!
|
|
*
|
|
* Vector boolean operations on paperjs objects
|
|
* This is mostly written for clarity (I hope it is clear) and compatibility,
|
|
* not optimised for performance, and has to be tested heavily for stability.
|
|
* (Looking up to Java's Area path boolean algorithms for stability,
|
|
* but the code is too complex —mainly because the operations are stored and
|
|
* enumerable, such as quadraticCurveTo, cubicCurveTo etc.; and is largely
|
|
* undocumented to directly adapt from)
|
|
*
|
|
* Supported
|
|
* - paperjs Path and CompoundPath objects
|
|
* - Boolean Union
|
|
* - Boolean Intersection
|
|
* - Boolean Subtraction
|
|
* - Resolving a self-intersecting Path
|
|
*
|
|
* Not supported yet ( which I would like to see supported )
|
|
* - Boolean operations on self-intersecting Paths, these has to be resolved first
|
|
* - Paths are clones of each other that ovelap exactly on top of each other!
|
|
*
|
|
* ------
|
|
* Harikrishnan Gopalakrishnan
|
|
* http://hkrish.com/playground/paperjs/booleanStudy.html
|
|
*
|
|
* ------
|
|
* Paperjs
|
|
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
|
|
* http://paperjs.org/license/
|
|
*
|
|
*/
|
|
|
|
|
|
var EPSILON = 10e-12;
|
|
var TOLERANCE = 10e-6;
|
|
|
|
var _tolerence = TOLERANCE;
|
|
|
|
function getIntersections2( path1, path2 ){
|
|
var locations = [];
|
|
return locations;
|
|
}
|
|
|
|
|
|
paper.Curve.prototype._addIntersections2 = function( v1, v2, curve, locations ) {
|
|
|
|
};
|
|
|
|
function _clipFatLine( v1, v2, t1, t2, u1, u2, tdiff, udiff, tvalue, curve1, curve2, locations, count ){
|
|
if( count === undefined ) { count = 0; }
|
|
else { ++count; }
|
|
if( t1 >= t2 - _tolerence && t1 <= t2 + _tolerence &&
|
|
u1 >= u2 - _tolerence && u1 <= u2 + _tolerence ){
|
|
var curve = tvalue ? curve2 : curve1;
|
|
locations.push( new CurveLocation( curve, t1 ) );
|
|
return;
|
|
}
|
|
|
|
var p0 = new Point( v1[0], v1[1] ), p3 = new Point( v1[6], v1[7] );
|
|
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
|
|
var q0 = new Point( v2[0], v2[1] ), q3 = new Point( v2[6], v2[7] );
|
|
var q1 = new Point( v2[2], v2[3] ), q2 = new Point( v2[4], v2[5] );
|
|
|
|
// Calculate L
|
|
var lp = new Line( p0, p3, false );
|
|
var d1 = lp.getSide( p1 ) * lp.getDistance( p1 );
|
|
var d2 = lp.getSide( p2 ) * lp.getDistance( p2 );
|
|
var dmin, dmax;
|
|
if( d1 * d2 > 0){
|
|
// 3/4 * min{0, d1, d2}
|
|
dmin = 1 * Math.min( 0, d1, d2 );
|
|
dmax = 1 * Math.max( 0, d1, d2 );
|
|
} else {
|
|
// 4/9 * min{0, d1, d2}
|
|
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
|
|
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
|
|
}
|
|
|
|
// Infinite lines for dmin and dmax for clipping
|
|
var vecdmin = new Line( [0, dmin], [1, 0] );
|
|
var vecdmax = new Line( [0, dmax], [1, 0] );
|
|
// The convex hull for the non-parametric bezier curve D(ti, di(t))
|
|
var dq0 = new Point( 0.0, lp.getSide(q0) * lp.getDistance(q0) );
|
|
var dq1 = new Point( 0.3333333333333333, lp.getSide(q1) * lp.getDistance(q1) );
|
|
var dq2 = new Point( 0.6666666666666666, lp.getSide(q2) * lp.getDistance(q2) );
|
|
var dq3 = new Point( 1.0, lp.getSide(q3) * lp.getDistance(q3) );
|
|
// Ideally we need to calculate the convex hull for D(ti, di(t))
|
|
// here we are just checking against all possibilities
|
|
var Dt = [
|
|
new Line( dq0, dq1, false ),
|
|
new Line( dq1, dq2, false ),
|
|
new Line( dq2, dq3, false ),
|
|
new Line( dq3, dq0, false ),
|
|
new Line( dq0, dq2, false ),
|
|
new Line( dq3, dq1, false )
|
|
];
|
|
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
|
|
// for the coorresponding t values
|
|
var tmindmin = Infinity, tmaxdmin = -Infinity,
|
|
tmindmax = Infinity, tmaxdmax = -Infinity, ixd, ixdx, i;
|
|
for (i = 0; i < 6; i++) {
|
|
var Dtl = Dt[i];
|
|
ixd = Dtl.intersect( vecdmin );
|
|
if( ixd ){
|
|
ixdx = ixd.x;
|
|
tmindmin = ( ixdx < tmindmin )? ixdx : tmindmin;
|
|
tmaxdmin = ( ixdx > tmaxdmin )? ixdx : tmaxdmin;
|
|
}
|
|
ixd = Dtl.intersect( vecdmax );
|
|
if( ixd ){
|
|
ixdx = ixd.x;
|
|
tmindmax = ( ixdx < tmindmax )? ixdx : tmindmax;
|
|
tmaxdmax = ( ixdx > tmaxdmax )? ixdx : tmaxdmax;
|
|
}
|
|
}
|
|
var tmin = Math.min( tmindmin, tmaxdmin, tmindmax, tmaxdmax );
|
|
var tmax = Math.max( tmindmin, tmaxdmin, tmindmax, tmaxdmax );
|
|
|
|
if( tmin < 0 || tmax > 1 ) {
|
|
// if( t1 >= t2 - _tolerence && t1 <= t2 + _tolerence ){
|
|
// locations.push( new CurveLocation( curve1, t1 ) );
|
|
// } else if( u1 >= u2 - _tolerence && u1 <= u2 + _tolerence ){
|
|
// locations.push( new CurveLocation( curve2, u1 ) );
|
|
// }
|
|
return;
|
|
}
|
|
|
|
|
|
// if( count === 1 ){
|
|
// // console.log( dmin, dmax, tmin, tmax )
|
|
// plotD_vs_t( 250, 110, Dt, dmin, dmax, tmin, tmax, 1, tvalue );
|
|
// }
|
|
|
|
// We need to toggle clipping both curves alternatively
|
|
// tvalue indicates whether to compare t or u for testing for convergence
|
|
var nuV2 = Curve.getPart( v2, tmin, tmax );
|
|
if( tvalue ){
|
|
nuT1 = t1 + tmin * ( t2 - t1 );
|
|
nuT2 = t1 + tmax * ( t2 - t1 );
|
|
// Test the convergence rate
|
|
// if the clipping fails to converge atleast 20%,
|
|
// subdivide the longest curve.
|
|
var convRate = (tdiff - tmax + tmin ) / tdiff;
|
|
if( convRate <= 0.2) {
|
|
|
|
}
|
|
|
|
// console.log( nuT1, nuT2, t1, t2 );
|
|
_clipFatLine( nuV2, v1, nuT1, nuT2, u1, u2, (tmax - tmin), udiff, !tvalue, curve1, curve2, locations, count );
|
|
} else {
|
|
nuU1 = u1 + tmin * ( u2 - u1 );
|
|
nuU2 = u1 + tmax * ( u2 - u1 );
|
|
|
|
convRate = ( udiff - tmax + tmin ) / udiff;
|
|
|
|
_clipFatLine( nuV2, v1, t1, t2, nuU1, nuU2 , tdiff, (tmax - tmin), !tvalue, curve1, curve2, locations, count );
|
|
}
|
|
}
|
|
|
|
|
|
function _clipFatLine2( v1, v2, t1, t2, u1, u2, tdiff, udiff, tvalue, curve1, curve2, locations ){
|
|
if( t1 >= t2 - _tolerence && t1 <= t2 + _tolerence &&
|
|
u1 >= u2 - _tolerence && u1 <= u2 + _tolerence ){
|
|
locations.push( new CurveLocation( curve1, t1 ) );
|
|
return;
|
|
}
|
|
|
|
var p0 = new Point( v1[0], v1[1] ), p3 = new Point( v1[6], v1[7] );
|
|
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
|
|
var q0 = new Point( v2[0], v2[1] ), q3 = new Point( v2[6], v2[7] );
|
|
var q1 = new Point( v2[2], v2[3] ), q2 = new Point( v2[4], v2[5] );
|
|
|
|
// Calculate L
|
|
var lp = new Line( p0, p3, false );
|
|
var d1 = lp.getSide( p1 ) * lp.getDistance( p1 );
|
|
var d2 = lp.getSide( p2 ) * lp.getDistance( p2 );
|
|
var dmin, dmax;
|
|
if( d1 * d2 > 0){
|
|
// 3/4 * min{0, d1, d2}
|
|
dmin = 0.75 * Math.min( 0, d1, d2 );
|
|
dmax = 0.75 * Math.max( 0, d1, d2 );
|
|
} else {
|
|
// 4/9 * min{0, d1, d2}
|
|
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
|
|
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
|
|
}
|
|
|
|
var dq0 = lp.getSide(q0) * lp.getDistance(q0);
|
|
var dq3 = lp.getSide(q3) * lp.getDistance(q3);
|
|
var Dt = [
|
|
[0.0, dq0],
|
|
[0.3333333333333333, lp.getSide(q1) * lp.getDistance(q1)],
|
|
[0.6666666666666666, lp.getSide(q2) * lp.getDistance(q2)],
|
|
[1.0, dq3]
|
|
];
|
|
|
|
var tmindmin = Infinity, tmaxdmin = -Infinity,
|
|
tmindmax = Infinity, tmaxdmax = -Infinity, ixd, i;
|
|
for (i = 0; i < 4; i++) {
|
|
var Dtl1 = Dt[i];
|
|
var Dtl2 = ( i === 3 )? Dt[0] : Dt[i + 1];
|
|
if( Dtl2[1] > Dtl1[1] ){
|
|
var tmp = Dtl2;
|
|
Dtl2 = Dtl1;
|
|
Dtl1 = tmp;
|
|
}
|
|
var dx = Dtl2[0] - Dtl1[0], dy = Dtl2[1] - Dtl1[1] ;
|
|
var dx_dy = ( dy !== 0 )? dx / dy : dx / ( dy + 0.0000001 );
|
|
ixd = Math.abs( Dtl1[0] + dx_dy * ( dmin - Dtl1[1] ) );
|
|
console.log( Dtl1, Dtl2, dmin, dmax, ixd, dmax >= Dtl2[1] && dmax <= Dtl1[1] )
|
|
if( dmin >= Dtl2[1] && dmin <= Dtl1[1] ){
|
|
tmindmin = ( ixd < tmindmin )? ixd : tmindmin;
|
|
tmaxdmin = ( ixd > tmaxdmin )? ixd : tmaxdmin;
|
|
}
|
|
ixd = Math.abs( Dtl1[0] + dx_dy * ( dmax - Dtl1[1] ) );
|
|
if( dmax >= Dtl2[1] && dmax <= Dtl1[1] ){
|
|
tmindmax = ( ixd < tmindmax )? ixd : tmindmax;
|
|
tmaxdmax = ( ixd > tmaxdmax )? ixd : tmaxdmax;
|
|
}
|
|
}
|
|
var tmin = Math.min( tmindmin, tmaxdmin, tmindmax, tmaxdmax );
|
|
var tmax = Math.max( tmindmin, tmaxdmin, tmindmax, tmaxdmax );
|
|
|
|
if( tmin < 0 || tmax > 1 ) {
|
|
if( t1 >= t2 - _tolerence && t1 <= t2 + _tolerence ){
|
|
locations.push( new CurveLocation( curve1, t1 ) );
|
|
} else if( u1 >= u2 - _tolerence && u1 <= u2 + _tolerence ){
|
|
locations.push( new CurveLocation( curve2, u1 ) );
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// We need to toggle clipping both curves alternatively
|
|
// tvalue indicates whether to compare t or u for testing for convergence
|
|
var nuV2 = Curve.getPart( v2, tmin, tmax );
|
|
if( tvalue ){
|
|
nuT1 = t1 + tmin * ( t2 - t1 );
|
|
nuT2 = t1 + tmax * ( t2 - t1 );
|
|
// Test the convergence rate
|
|
// if the clipping fails to converge atleast 20%,
|
|
// subdivide the longest curve.
|
|
var convRate = (tdiff - tmax + tmin ) / tdiff;
|
|
if( convRate <= 0.2) {
|
|
|
|
}
|
|
|
|
// console.log( nuT1, nuT2, t1, t2 );
|
|
_clipFatLine( nuV2, v1, nuT1, nuT2, u1, u2, (tmax - tmin), udiff, !tvalue, curve2, curve1, locations );
|
|
} else {
|
|
nuU1 = u1 + tmin * ( u2 - u1 );
|
|
nuU2 = u1 + tmax * ( u2 - u1 );
|
|
|
|
convRate = ( udiff - tmax + tmin ) / udiff;
|
|
|
|
// console.log( "u", nuU1, nuU2, u1, u2 );
|
|
_clipFatLine( nuV2, v1, t1, t2, nuU1, nuU2 , tdiff, (tmax - tmin), !tvalue, curve1, curve2, locations );
|
|
}
|
|
plotD_vs_t( 250, 110, Dt, dmin, dmax, tmin, tmax, 1, tvalue );
|
|
}
|
|
|
|
|
|
function drawFatline( v1 ) {
|
|
var l = new Line( [v1[0], v1[1]], [v1[6], v1[7]], false );
|
|
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
|
|
var d1 = l.getSide( p1 ) * l.getDistance( p1 );
|
|
var d2 = l.getSide( p2 ) * l.getDistance( p2 );
|
|
var dmin, dmax;
|
|
if( d1 * d2 > 0){
|
|
// 3/4 * min{0, d1, d2}
|
|
dmin = 0.75 * Math.min( 0, d1, d2 );
|
|
dmax = 0.75 * Math.max( 0, d1, d2 );
|
|
} else {
|
|
// 4/9 * min{0, d1, d2}
|
|
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
|
|
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
|
|
}
|
|
|
|
var ll = new Path.Line( v1[0], v1[1], v1[6], v1[7] );
|
|
ll.style.strokeColor = new Color( 0,0,0.9, 0.8);
|
|
var lp1 = ll.segments[0].point;
|
|
var lp2 = ll.segments[1].point;
|
|
var pm = l.vector, pm1 = pm.rotate( signum( dmin ) * -90 ), pm2 = pm.rotate( signum( dmax ) * -90 );
|
|
var p11 = lp1.add( pm1.normalize( Math.abs(dmin) ) );
|
|
var p12 = lp2.add( pm1.normalize( Math.abs(dmin) ) );
|
|
var p21 = lp1.add( pm2.normalize( Math.abs(dmax) ) );
|
|
var p22 = lp2.add( pm2.normalize( Math.abs(dmax) ) );
|
|
ll = new Path.Line( p11, p12 );
|
|
ll.style.strokeColor = new Color( 0,0,0.9);
|
|
ll = new Path.Line( p21, p22 );
|
|
ll.style.strokeColor = new Color( 0,0,0.9);
|
|
}
|
|
|
|
function plotD_vs_t( x, y, arr, dmin, dmax, tmin, tmax, yscale, tvalue ){
|
|
yscale = yscale || 1;
|
|
new Path.Line( x, y-100, x, y+100 ).style.strokeColor = '#aaa';
|
|
new Path.Line( x, y, x + 200, y ).style.strokeColor = '#aaa';
|
|
|
|
var clr = (tvalue)? '#a00' : '#00a';
|
|
|
|
new Path.Line( x, y + dmin * yscale, x + 200, y + dmin * yscale ).style.strokeColor = '#000';
|
|
new Path.Line( x, y + dmax * yscale, x + 200, y + dmax * yscale ).style.strokeColor = '#000';
|
|
new Path.Line( x + tmin * 190, y-100, x + tmin * 190, y+100 ).style.strokeColor = clr;
|
|
new Path.Line( x + tmax * 190, y-100, x + tmax * 190, y+100 ).style.strokeColor = clr;
|
|
|
|
var pnt = [];
|
|
for (var i = 0; i < arr.length; i++) {
|
|
pnt.push( new Point( x + arr[i].point.x * 190, y + arr[i].point.y * yscale ) );
|
|
// pnt.push( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ) );
|
|
}
|
|
var pth = new Path( pnt[0], pnt[1], pnt[2], pnt[3] );
|
|
pth.closed = true;
|
|
pth.style.strokeColor = '#000';
|
|
new Path( new Segment(pnt[0], null, pnt[1].subtract(pnt[0])), new Segment( pnt[3], pnt[2].subtract(pnt[3]), null ) ).style.strokeColor = clr;
|
|
}
|
|
|
|
function signum(num) {
|
|
return ( num > 0 )? 1 : ( num < 0 )? -1 : 0;
|
|
}
|
|
|
|
var _addLineIntersections = function(v1, v2, curve, locations) {
|
|
var result, a1x, a2x, b1x, b2x, a1y, a2y, b1y, b2y;
|
|
a1x = v1[0]; a1y = v1[1];
|
|
a2x = v1[6]; a2y = v1[7];
|
|
b1x = v2[0]; b1y = v2[1];
|
|
b2x = v2[6]; b2y = v2[7];
|
|
var ua_t = (b2x - b1x) * (a1y - b1y) - (b2y - b1y) * (a1x - b1x);
|
|
var ub_t = (a2x - a1x) * (a1y - b1y) - (a2y - a1y) * (a1x - b1x);
|
|
var u_b = (b2y - b1y) * (a2x - a1x) - (b2x - b1x) * (a2y - a1y);
|
|
if ( u_b !== 0 ) {
|
|
var ua = ua_t / u_b;
|
|
var ub = ub_t / u_b;
|
|
if ( 0 <= ua && ua <= 1 && 0 <= ub && ub <= 1 ) {
|
|
locations.push( new CurveLocation(curve, null, new Point(a1x + ua * (a2x - a1x), a1y + ua * (a2y - a1y))) );
|
|
}
|
|
}
|
|
};
|