mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-07 13:22:07 -05:00
416 lines
19 KiB
JavaScript
416 lines
19 KiB
JavaScript
|
|
var EPSILON = 10e-12;
|
|
var TOLERANCE = 10e-6;
|
|
var MAX_RECURSE = 20;
|
|
var MAX_ITERATE = 20;
|
|
|
|
/**
|
|
* This method is analogous to paperjs#PathItem.getIntersections
|
|
*/
|
|
function getIntersections2( path1, path2 ){
|
|
// First check the bounds of the two paths. If they don't intersect,
|
|
// we don't need to iterate through their curves.
|
|
if (!path1.getBounds().touches(path2.getBounds()))
|
|
return [];
|
|
var locations = [],
|
|
curves1 = path1.getCurves(),
|
|
curves2 = path2.getCurves(),
|
|
length2 = curves2.length,
|
|
values2 = [], i;
|
|
for (i = 0; i < length2; i++)
|
|
values2[i] = curves2[i].getValues();
|
|
for (i = 0, l = curves1.length; i < l; i++) {
|
|
var curve1 = curves1[i],
|
|
values1 = curve1.getValues();
|
|
var v1Linear = Curve.isLinear(values1);
|
|
for (var j = 0; j < length2; j++){
|
|
value2 = values2[j];
|
|
var v2Linear = Curve.isLinear(value2);
|
|
if( v1Linear && v2Linear ){
|
|
_getLineLineIntersection(values1, value2, curve1, curves2[j], locations);
|
|
} else if ( v1Linear || v2Linear ){
|
|
_getCurveLineIntersection(values1, value2, curve1, curves2[j], locations);
|
|
} else {
|
|
Curve.getIntersections2(values1, value2, curve1, curves2[j], locations);
|
|
}
|
|
}
|
|
}
|
|
return locations;
|
|
}
|
|
|
|
/**
|
|
* This method is analogous to paperjs#Curve.getIntersections
|
|
* @param {[type]} v1
|
|
* @param {[type]} v2
|
|
* @param {[type]} curve1
|
|
* @param {[type]} curve2
|
|
* @param {[type]} locations
|
|
* @param {[type]} _v1t - Only used for recusion
|
|
* @param {[type]} _v2t - Only used for recusion
|
|
*/
|
|
paper.Curve.getIntersections2 = function( v1, v2, curve1, curve2, locations, _v1t, _v2t, _recurseDepth ) {
|
|
_recurseDepth = _recurseDepth ? _recurseDepth + 1 : 1;
|
|
// Avoid endless recursion.
|
|
// Perhaps we should fall back to a more expensive method after this, but
|
|
// so far endless recursion happens only when there is no real intersection and
|
|
// the infinite fatline continue to intersect with the other curve outside its bounds!
|
|
if( _recurseDepth > MAX_RECURSE ) return;
|
|
// cache the original parameter range.
|
|
_v1t = _v1t || { t1: 0, t2: 1 };
|
|
_v2t = _v2t || { t1: 0, t2: 1 };
|
|
var v1t = { t1: _v1t.t1, t2: _v1t.t2 };
|
|
var v2t = { t1: _v2t.t1, t2: _v2t.t2 };
|
|
// Get the clipped parts from the original curve, to avoid cumulative errors
|
|
var _v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
|
|
var _v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
|
|
// markCurve( _v1, '#f0f', true );
|
|
// markCurve( _v2, '#0ff', false );
|
|
var nuT, parts, tmpt = { t1:null, t2:null }, iterate = 0;
|
|
// Loop until both parameter range converge. We have to handle the degenerate case
|
|
// seperately, where fat-line clipping can become numerically unstable when one of the
|
|
// curves has converged to a point and the other hasn't.
|
|
while( iterate < MAX_ITERATE &&
|
|
( Math.abs(v1t.t2 - v1t.t1) > TOLERANCE || Math.abs(v2t.t2 - v2t.t1) > TOLERANCE ) ){
|
|
++iterate;
|
|
// First we clip v2 with v1's fat-line
|
|
tmpt.t1 = v2t.t1; tmpt.t2 = v2t.t2;
|
|
var intersects1 = _clipBezierFatLine( _v1, _v2, tmpt );
|
|
// Stop if there are no possible intersections
|
|
if( intersects1 === 0 ){
|
|
return;
|
|
} else if( intersects1 > 0 ){
|
|
// Get the clipped parts from the original v2, to avoid cumulative errors
|
|
// ...and reuse some objects.
|
|
v2t.t1 = tmpt.t1; v2t.t2 = tmpt.t2;
|
|
_v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
|
|
// markCurve( _v2, '#0ff', false );
|
|
// Next we clip v1 with nuv2's fat-line
|
|
tmpt.t1 = v1t.t1; tmpt.t2 = v1t.t2;
|
|
var intersects2 = _clipBezierFatLine( _v2, _v1, tmpt );
|
|
// Stop if there are no possible intersections
|
|
if( intersects2 === 0 ){
|
|
return;
|
|
}else if( intersects1 > 0 ){
|
|
// Get the clipped parts from the original v2, to avoid cumulative errors
|
|
v1t.t1 = tmpt.t1; v1t.t2 = tmpt.t2;
|
|
_v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
|
|
}
|
|
// markCurve( _v1, '#f0f', true );
|
|
}
|
|
// Get the clipped parts from the original v1
|
|
// Check if there could be multiple intersections
|
|
if( intersects1 < 0 || intersects2 < 0 ){
|
|
// Subdivide the curve which has converged the least from the original range [0,1],
|
|
// which would be the curve with the largest parameter range after clipping
|
|
if( v1t.t2 - v1t.t1 > v2t.t2 - v2t.t1 ){
|
|
// subdivide _v1 and recurse
|
|
nuT = ( _v1t.t1 + _v1t.t2 ) / 2.0;
|
|
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: _v1t.t1, t2: nuT }, _v2t, _recurseDepth );
|
|
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: nuT, t2: _v1t.t2 }, _v2t, _recurseDepth );
|
|
return;
|
|
} else {
|
|
// subdivide _v2 and recurse
|
|
nuT = ( _v2t.t1 + _v2t.t2 ) / 2.0;
|
|
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: _v2t.t1, t2: nuT }, _recurseDepth );
|
|
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: nuT, t2: _v2t.t2 }, _recurseDepth );
|
|
return;
|
|
}
|
|
}
|
|
// We need to bailout of clipping and try a numerically stable method if
|
|
// any of the following are true.
|
|
// 1. One of the parameter ranges is converged to a point.
|
|
// 2. Both of the parameter ranges have converged reasonably well ( according to TOLERENCE ).
|
|
// 3. One of the parameter range is converged enough so that it is *flat enough* to
|
|
// calculate line curve intersection implicitly.
|
|
//
|
|
// Check if one of the parameter range has converged completely to a point.
|
|
// Now things could get only worse if we iterate more for the other
|
|
// curve to converge if it hasn't yet happened so.
|
|
var v1Converged = (Math.abs(v1t.t2 - v1t.t1) < EPSILON),
|
|
v2Converged = (Math.abs(v2t.t2 - v2t.t1) < EPSILON);
|
|
if( v1Converged || v2Converged ){
|
|
var first = locations[0],
|
|
last = locations[locations.length - 1];
|
|
if ((!first || !point.equals(first._point))
|
|
&& (!last || !point.equals(last._point))){
|
|
var point = (v1Converged)? curve1.getPointAt(v1t.t1, true) : curve2.getPointAt(v2t.t1, true);
|
|
locations.push(new CurveLocation(curve1, null, point, curve2));
|
|
}
|
|
return;
|
|
}
|
|
// Check to see if both parameter ranges have converged or else,
|
|
// see if either or both of the curves are flat enough to be treated as lines
|
|
if( Math.abs(v1t.t2 - v1t.t1) <= TOLERANCE && Math.abs(v2t.t2 - v2t.t1) <= TOLERANCE ){
|
|
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
|
|
return;
|
|
} else {
|
|
var curve1Flat = Curve.isFlatEnough( _v1, /*#=*/ TOLERANCE );
|
|
var curve2Flat = Curve.isFlatEnough( _v2, /*#=*/ TOLERANCE );
|
|
if ( curve1Flat && curve2Flat ) {
|
|
_getLineLineIntersection( _v1, _v2, curve1, curve2, locations );
|
|
return;
|
|
} else if( curve1Flat || curve2Flat ){
|
|
// Use curve line intersection method while specifying which curve to be treated as line
|
|
_getCurveLineIntersection( _v1, _v2, curve1, curve2, locations, curve1Flat );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Clip curve V2 with fat-line of v1
|
|
* @param {Array} v1 - Section of the first curve, for which we will make a fat-line
|
|
* @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v1
|
|
* @param {Object} v2t - The parameter range of v2
|
|
* @return {number} -> 0 -no Intersection, 1 -one intersection, -1 -more than one intersection
|
|
*/
|
|
function _clipBezierFatLine( v1, v2, v2t ){
|
|
// first curve, P
|
|
var p0x = v1[0], p0y = v1[1], p3x = v1[6], p3y = v1[7];
|
|
var p1x = v1[2], p1y = v1[3], p2x = v1[4], p2y = v1[5];
|
|
// second curve, Q
|
|
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7];
|
|
var q1x = v2[2], q1y = v2[3], q2x = v2[4], q2y = v2[5];
|
|
// Calculate the fat-line L for P is the baseline l and two
|
|
// offsets which completely encloses the curve P.
|
|
var d1 = _getSignedDist( p0x, p0y, p3x, p3y, p1x, p1y ) || 0;
|
|
var d2 = _getSignedDist( p0x, p0y, p3x, p3y, p2x, p2y ) || 0;
|
|
var dmin, dmax;
|
|
if( d1 * d2 > 0){
|
|
// 3/4 * min{0, d1, d2}
|
|
dmin = 0.75 * Math.min( 0, d1, d2 );
|
|
dmax = 0.75 * Math.max( 0, d1, d2 );
|
|
} else {
|
|
// 4/9 * min{0, d1, d2}
|
|
dmin = 0.4444444444444444 * Math.min( 0, d1, d2 );
|
|
dmax = 0.4444444444444444 * Math.max( 0, d1, d2 );
|
|
}
|
|
// Calculate non-parametric bezier curve D(ti, di(t)) -
|
|
// di(t) is the distance of Q from the baseline l of the fat-line,
|
|
// ti is equally spaced in [0,1]
|
|
var dq0 = _getSignedDist( p0x, p0y, p3x, p3y, q0x, q0y );
|
|
var dq1 = _getSignedDist( p0x, p0y, p3x, p3y, q1x, q1y );
|
|
var dq2 = _getSignedDist( p0x, p0y, p3x, p3y, q2x, q2y );
|
|
var dq3 = _getSignedDist( p0x, p0y, p3x, p3y, q3x, q3y );
|
|
// Find the minimum and maximum distances from l,
|
|
// this is useful for checking whether the curves intersect with each other or not.
|
|
var mindist = Math.min( dq0, dq1, dq2, dq3 );
|
|
var maxdist = Math.max( dq0, dq1, dq2, dq3 );
|
|
// If the fatlines don't overlap, we have no intersections!
|
|
if( dmin > maxdist || dmax < mindist ){
|
|
return 0;
|
|
}
|
|
var tmp;
|
|
if( dq3 < dq0 ){
|
|
tmp = dmin; dmin = dmax; dmax = tmp;
|
|
}
|
|
var Dt = _convexhull( dq0, dq1, dq2, dq3 );
|
|
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
|
|
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
|
|
// for the coorresponding t values (tmin, tmax):
|
|
// Portions of curve v2 before tmin and after tmax can safely be clipped away
|
|
var tmaxdmin = -Infinity, ixd, ixdx, i, len, inv_m;
|
|
var tmin = Infinity, tmax = -Infinity, Dtl, dtlx1, dtly1, dtlx2, dtly2;
|
|
for (i = 0, len = Dt.length; i < len; i++) {
|
|
Dtl = Dt[i];
|
|
dtlx1 = Dtl[0]; dtly1 = Dtl[1]; dtlx2 = Dtl[2]; dtly2 = Dtl[3];
|
|
if( dtly2 < dtly1 ){
|
|
tmp = dtly2; dtly2 = dtly1; dtly1 = tmp;
|
|
tmp = dtlx2; dtlx2 = dtlx1; dtlx1 = tmp;
|
|
}
|
|
// we know that (dtlx2 - dtlx1) is never 0
|
|
inv_m = (dtly2 - dtly1) / (dtlx2 - dtlx1);
|
|
if( dmin >= dtly1 && dmin <= dtly2 ){
|
|
ixdx = dtlx1 + (dmin - dtly1) / inv_m;
|
|
if ( ixdx < tmin ) tmin = ixdx;
|
|
if ( ixdx > tmaxdmin ) tmaxdmin = ixdx;
|
|
}
|
|
if( dmax >= dtly1 && dmax <= dtly2 ){
|
|
ixdx = dtlx1 + (dmax - dtly1) / inv_m;
|
|
if( ixdx > tmax ) tmax = ixdx;
|
|
if( ixdx < tmin ) tmin = 0;
|
|
}
|
|
}
|
|
// Return the parameter values for v2 for which we can be sure that the
|
|
// intersection with v1 lies within.
|
|
if(tmin !== Infinity && tmax !== -Infinity){
|
|
var mindmin = Math.min(dmin, dmax);
|
|
var mindmax = Math.max(dmin, dmax);
|
|
if( dq3 > mindmin && dq3 < mindmax ){
|
|
tmax = 1;
|
|
}
|
|
if( dq0 > mindmin && dq0 < mindmax ){
|
|
tmin = 0;
|
|
}
|
|
if( tmaxdmin > tmax ){ tmax = 1; }
|
|
// Debug: Plot the non-parametric graph and hull
|
|
// plotD_vs_t( 500, 110, Dt, [dq0, dq1, dq2, dq3], v1, dmin, dmax, tmin, tmax, 1.0 / ( tmax - tmin + 0.3 ) )
|
|
// tmin and tmax are within the range (0, 1). We need to project it to the original
|
|
// parameter range for v2.
|
|
var v2tmin = v2t.t1;
|
|
var tdiff = ( v2t.t2 - v2tmin );
|
|
v2t.t1 = v2tmin + tmin * tdiff;
|
|
v2t.t2 = v2tmin + tmax * tdiff;
|
|
// If the new parameter range fails to converge by atleast 20% of the original range,
|
|
// possibly we have multiple intersections. We need to subdivide one of the curves.
|
|
if( (tdiff - ( v2t.t2 - v2t.t1 ))/tdiff >= 0.2 ){
|
|
return 1;
|
|
}
|
|
}
|
|
// TODO: Try checking with a perpendicular fatline to see if the curves overlap
|
|
// if it is any faster than this
|
|
if( Curve.getBounds( v1 ).touches( Curve.getBounds( v2 ) ) ){
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
|
|
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
|
|
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the curve are
|
|
* already sorted in the X axis in the increasing order. Calculating convex-hull is
|
|
* much easier than a set of arbitrary points.
|
|
*/
|
|
function _convexhull( dq0, dq1, dq2, dq3 ){
|
|
var distq1 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.3333333333333333, dq1 );
|
|
var distq2 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.6666666666666666, dq2 );
|
|
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3]
|
|
if( distq1 * distq2 < 0 ) {
|
|
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
|
|
// Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of the convexhull
|
|
// so we are pretty much done here.
|
|
Dt = [
|
|
[ 0.0, dq0, 0.3333333333333333, dq1 ],
|
|
[ 0.3333333333333333, dq1, 1.0, dq3 ],
|
|
[ 0.6666666666666666, dq2, 0.0, dq0 ],
|
|
[ 1.0, dq3, 0.6666666666666666, dq2 ]
|
|
];
|
|
} else {
|
|
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]
|
|
// Convexhull can be a triangle or a quadrilateral and
|
|
// line [0, q0, 1, q3] is part of the convexhull.
|
|
// Check if the hull is a triangle or a quadrilateral
|
|
var dqmin, dqmax, dqapex1, dqapex2;
|
|
distq1 = Math.abs(distq1);
|
|
distq2 = Math.abs(distq2);
|
|
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
|
|
if( distq1 > distq2 ){
|
|
dqmin = [ 0.6666666666666666, dq2 ];
|
|
dqmax = [ 0.3333333333333333, dq1 ];
|
|
// apex is dq3 and the other apex point is dq0
|
|
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
|
|
vqa1a2x = 1.0, vqa1a2y = dq3 - dq0;
|
|
// vector dqapex->dqmax
|
|
vqa1Maxx = 0.6666666666666666, vqa1Maxy = dq3 - dq1;
|
|
// vector dqapex->dqmin
|
|
vqa1Minx = 0.3333333333333333, vqa1Miny = dq3 - dq2;
|
|
} else {
|
|
dqmin = [ 0.3333333333333333, dq1 ];
|
|
dqmax = [ 0.6666666666666666, dq2 ];
|
|
// apex is dq0 in this case, and the other apex point is dq3
|
|
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
|
|
vqa1a2x = -1.0, vqa1a2y = dq0 - dq3;
|
|
// vector dqapex->dqmax
|
|
vqa1Maxx = -0.6666666666666666, vqa1Maxy = dq0 - dq2;
|
|
// vector dqapex->dqmin
|
|
vqa1Minx = -0.3333333333333333, vqa1Miny = dq0 - dq1;
|
|
}
|
|
// compare cross products of these vectors to determine, if
|
|
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
|
|
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
|
|
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
|
|
if( vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0 ){
|
|
// Point [2/3, dq2] is inside the triangle and the convex hull is a triangle
|
|
Dt = [
|
|
[ 0.0, dq0, dqmax[0], dqmax[1] ],
|
|
[ dqmax[0], dqmax[1], 1.0, dq3 ],
|
|
[ 1.0, dq3, 0.0, dq0 ]
|
|
];
|
|
} else {
|
|
// Convexhull is a quadrilateral and we need all lines in the correct order where
|
|
// line [0, q0, 1, q3] is part of the convex hull
|
|
Dt = [
|
|
[ 0.0, dq0, 0.3333333333333333, dq1 ],
|
|
[ 0.3333333333333333, dq1, 0.6666666666666666, dq2 ],
|
|
[ 0.6666666666666666, dq2, 1.0, dq3 ],
|
|
[ 1.0, dq3, 0.0, dq0 ]
|
|
];
|
|
}
|
|
}
|
|
return Dt;
|
|
}
|
|
|
|
// This is basically an "unrolled" version of #Line.getDistance() with sign
|
|
// May be a static method could be better!
|
|
var _getSignedDist = function( a1x, a1y, a2x, a2y, bx, by ){
|
|
var vx = a2x - a1x, vy = a2y - a1y;
|
|
var m = vy / vx, b = a1y - ( m * a1x );
|
|
return ( by - ( m * bx ) - b ) / Math.sqrt( m*m + 1 );
|
|
};
|
|
|
|
/**
|
|
* Intersections between curve and line becomes rather simple here mostly
|
|
* because of paperjs Numerical class. We can rotate the curve and line so that
|
|
* the line is on X axis, and solve the implicit equations for X axis and the curve
|
|
*/
|
|
var _getCurveLineIntersection = function( v1, v2, curve1, curve2, locations, _other ){
|
|
var i, root, point, vc = v1, vl = v2;
|
|
var other = ( _other === undefined )? Curve.isLinear( v1 ) : _other;
|
|
if( other ){
|
|
vl = v1;
|
|
vc = v2;
|
|
}
|
|
var l1x = vl[0], l1y = vl[1], l2x = vl[6], l2y = vl[7];
|
|
// rotate both the curve and line around l1 so that line is on x axis
|
|
var lvx = l2x - l1x, lvy = l2y - l1y;
|
|
// Angle with x axis (1, 0)
|
|
var angle = Math.atan2( -lvy, lvx ), sina = Math.sin( angle ), cosa = Math.cos( angle );
|
|
// rotated line and curve values
|
|
// (rl1x, rl1y) = (0, 0)
|
|
var rl2x = lvx * cosa - lvy * sina, rl2y = lvy * cosa + lvx * sina;
|
|
var rvc = [];
|
|
for( i=0; i<8; i+=2 ){
|
|
var vcx = vc[i] - l1x, vcy = vc[i+1] - l1y;
|
|
rvc.push( vcx * cosa - vcy * sina );
|
|
rvc.push( vcy * cosa + vcx * sina );
|
|
}
|
|
var roots = [];
|
|
Curve.solveCubic(rvc, 1, 0, roots);
|
|
i = roots.length;
|
|
while( i-- ){
|
|
root = roots[i];
|
|
if( root >= 0 && root <= 1 ){
|
|
point = Curve.evaluate(rvc, root, true, 0);
|
|
// We do have a point on the infinite line. Check if it falls on the line *segment*.
|
|
if( point.x >= 0 && point.x <= rl2x ){
|
|
// The actual intersection point
|
|
point = Curve.evaluate(vc, root, true, 0);
|
|
if( other ) root = null;
|
|
var first = locations[0],
|
|
last = locations[locations.length - 1];
|
|
if ((!first || !point.equals(first._point))
|
|
&& (!last || !point.equals(last._point)))
|
|
locations.push( new CurveLocation( curve1, root, point, curve2 ) );
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
var _getLineLineIntersection = function( v1, v2, curve1, curve2, locations ){
|
|
var point = Line.intersect(
|
|
v1[0], v1[1], v1[6], v1[7],
|
|
v2[0], v2[1], v2[6], v2[7], false);
|
|
if (point) {
|
|
// Avoid duplicates when hitting segments (closed paths too)
|
|
var first = locations[0],
|
|
last = locations[locations.length - 1];
|
|
if ((!first || !point.equals(first._point))
|
|
&& (!last || !point.equals(last._point)))
|
|
// Passing null for parameter leads to lazy determination
|
|
// of parameter values in CurveLocation#getParameter()
|
|
// only once they are requested.
|
|
locations.push(new CurveLocation(curve1, null, point, curve2));
|
|
}
|
|
};
|