paper.js/src/path/Path.js

1072 lines
31 KiB
JavaScript

/*
* Paper.js
*
* This file is part of Paper.js, a JavaScript Vector Graphics Library,
* based on Scriptographer.org and designed to be largely API compatible.
* http://paperjs.org/
* http://scriptographer.org/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
* All rights reserved.
*/
var Path = this.Path = PathItem.extend({
beans: true,
initialize: function(segments) {
this.base();
this.closed = false;
this._selectedSegmentCount = 0;
// Support both passing of segments as array or arguments
// If it is an array, it can also be a description of a point, so
// check its first entry for object as well
this.setSegments(!segments || !Array.isArray(segments)
|| typeof segments[0] != 'object' ? arguments : segments);
},
/**
* The curves contained within the path.
*/
getCurves: function() {
var length = this._segments.length;
// Reduce length by one if it's an open path:
if (!this.closed && length > 0)
length--;
var curves = this._curves = this._curves || new Array(length);
curves.length = length;
for (var i = 0; i < length; i++) {
var curve = curves[i];
if (!curve) {
curve = curves[i] = new Curve(this, i);
} else {
// Make sure index is kept up to date.
curve._setIndex(i);
}
}
return curves;
},
getFirstSegment: function() {
return this._segments[0];
},
getLastSegment: function() {
return this._segments[this._segments.length - 1];
},
getFirstCurve: function() {
return this.getCurves()[0];
},
getLastCurve: function() {
var curves = this.getCurves();
return curves[curves.length - 1];
},
// TODO: Consider adding getSubPath(a, b), returning a part of the current
// path, with the added benefit that b can be < a, and closed looping is
// taken into account.
_transform: function(matrix, flags) {
if (!matrix.isIdentity()) {
var coords = new Array(6);
for (var i = 0, l = this._segments.length; i < l; i++) {
this._segments[i]._transformCoordinates(matrix, coords, true);
}
}
},
/**
* Private method that adds a segment to the segment list. It assumes that
* the passed object is a segment already and does not perform any checks.
*/
_add: function(segment, index) {
// If this segment belongs to another path already, clone it before
// adding.
if (segment._path)
segment = new Segment(segment);
segment._path = this;
if (index === undefined) {
this._segments.push(segment);
} else {
this._segments.splice(index, 0, segment);
}
return segment;
},
add: function(segment) {
segment = Segment.read(arguments);
return segment ? this._add(segment) : null;
},
insert: function(index, segment) {
segment = Segment.read(arguments, 1);
return segment ? this._add(segment, index) : null;
},
remove: function() {
if (!arguments.length) {
// remove()
this.base();
} else if (arguments.length == 1) {
if (arguments[0].point) {
// remove(segment)
arguments[0].remove();
} else {
// remove(index)
this._segments[arguments[0]].remove();
}
} else {
// remove(fromIndex, toIndex)
for(var i = arguments[1], l = arguments[0]; i >= l; i--)
this._segments[i].remove();
}
},
isSelected: function() {
return this._selectedSegmentCount > 0;
},
setSelected: function(selected) {
var wasSelected = this.isSelected(),
length = this._segments.length;
if (!wasSelected != !selected && length)
this._document._selectItem(this, selected);
this._selectedSegmentCount = selected ? length : 0;
for (var i = 0; i < length; i++)
this._segments[i]._selectionState = selected
? SelectionState.POINT : 0;
},
isFullySelected: function() {
return this._selectedSegmentCount == this._segments.length;
},
setFullySelected: function(selected) {
this.setSelected(selected);
},
// TODO: pointsToCurves([tolerance[, threshold[, cornerRadius[, scale]]]])
// TODO: curvesToPoints([maxPointDistance[, flatness]])
// TODO: reduceSegments([flatness])
// TODO: split(offset) / split(location) / split(index[, parameter])
/**
* Reverses the segments of the path.
*/
reverse: function() {
var segments = this._segments;
segments.reverse();
// Reverse the handles:
for (var i = 0, l = segments.length; i < l; i++) {
var segment = segments[i];
var handleIn = segment._handleIn;
segment._handleIn = segment._handleOut;
segment._handleOut = handleIn;
}
},
join: function(path) {
if (path) {
var segments = path.segments,
last1 = this.getLastSegment(),
last2 = path.getLastSegment();
if (last1._point.equals(last2._point))
path.reverse();
var first2 = path.getFirstSegment();
if (last1._point.equals(first2._point)) {
last1.setHandleOut(first2._handleOut);
for (var i = 1, l = segments.length; i < l; i++)
this._add(segments[i]);
} else {
var first1 = this.getFirstSegment();
if (first1._point.equals(first2._point))
path.reverse();
if (first1._point.equals(last2._point)) {
first1.setHandleIn(last2._handleIn);
// Prepend all segments from path except last one
for (var i = 0, l = segments.length - 1; i < l; i++)
this._add(segments[i], 0);
} else {
for (var i = 0, l = segments.length; i < l; i++)
this._add(segments[i]);
}
}
path.remove();
// Close if they touch in both places
var first1 = this.getFirstSegment();
last1 = this.getLastSegment();
if (last1._point.equals(first1._point)) {
first1.setHandleIn(last1._handleIn);
last1.remove();
this.closed = true;
}
return true;
}
return false;
},
getLength: function() {
var curves = this.getCurves();
var length = 0;
for (var i = 0, l = curves.length; i < l; i++)
length += curves[i].getLength();
return length;
},
_getOffset: function(location) {
var index = location && location.getIndex();
if (index != null) {
var curves = this.getCurves(),
offset = 0;
for (var i = 0; i < index; i++)
offset += curves[i].getLength();
var curve = curves[index];
return offset + curve.getLength(0, location.getParameter());
}
return null;
},
// TODO: getLocationAt(point, precision)
// TODO: Port back renaming and new isParameter argument to Scriptographer
getLocationAt: function(offset, isParameter) {
var curves = this.getCurves(),
length = 0;
if (isParameter) {
// offset consists of curve index and curve parameter, before and
// after the fractional digit.
var index = ~~offset; // = Math.floor()
return new CurveLocation(curves[index], offset - index);
}
for (var i = 0, l = curves.length; i < l; i++) {
var start = length,
curve = curves[i];
length += curve.getLength();
if (length >= offset) {
// Found the segment within which the length lies
return new CurveLocation(curve,
curve.getParameter(offset - start));
}
}
// It may be that through impreciseness of getLength, that the end
// of the curves was missed:
if (offset <= this.getLength())
return new CurveLocation(curves[curves.length - 1], 1);
return null;
},
/**
* Returns the point of the path at the given offset.
*/
getPointAt: function(offset, isParameter) {
var loc = this.getLocationAt(offset, isParameter);
return loc && loc.getPoint();
},
/**
* Returns the tangent to the path at the given offset as a vector
* point.
*/
getTangentAt: function(offset, isParameter) {
var loc = this.getLocationAt(offset, isParameter);
return loc && loc.getTangent();
},
/**
* Returns the normal to the path at the given offset as a vector point.
*/
getNormalAt: function(offset, isParameter) {
var loc = this.getLocationAt(offset, isParameter);
return loc && loc.getNormal();
}
}, new function() { // Scope for drawing
// Note that in the code below we're often accessing _x and _y on point
// objects that were read from segments. This is because the SegmentPoint
// class overrides the plain x / y properties with getter / setters and
// stores the values in these private properties internally. To avoid
// of getter functions all the time we directly access these private
// properties here. The distinction between normal Point objects and
// SegmentPoint objects maybe seem a bit tedious but is worth the
// performance benefit.
function drawHandles(ctx, segments) {
for (var i = 0, l = segments.length; i < l; i++) {
var segment = segments[i],
point = segment._point,
pointSelected = segment._selectionState == SelectionState.POINT;
// TODO: draw handles depending on selection state of
// segment.point and neighbouring segments.
if (pointSelected || segment.isSelected(segment._handleIn))
drawHandle(ctx, point, segment._handleIn);
if (pointSelected || segment.isSelected(segment._handleOut))
drawHandle(ctx, point, segment._handleOut);
// Draw a rectangle at segment.point:
ctx.save();
ctx.beginPath();
ctx.rect(point._x - 2, point._y - 2, 4, 4);
ctx.fill();
// TODO: Only draw white rectangle if point.isSelected()
// is false:
if (!pointSelected) {
ctx.beginPath();
ctx.rect(point._x - 1, point._y - 1, 2, 2);
ctx.fillStyle = '#ffffff';
ctx.fill();
ctx.restore();
}
}
}
function drawHandle(ctx, point, handle) {
if (!handle.isZero()) {
var handleX = point._x + handle._x,
handleY = point._y + handle._y;
ctx.beginPath();
ctx.moveTo(point._x, point._y);
ctx.lineTo(handleX, handleY);
ctx.stroke();
ctx.beginPath();
ctx.rect(handleX - 1, handleY - 1, 2, 2);
ctx.stroke();
}
}
return {
draw: function(ctx, param) {
if (!param.compound)
ctx.beginPath();
var segments = this._segments,
length = segments.length,
handleOut, outX, outY;
for (var i = 0; i < length; i++) {
var segment = segments[i],
point = segment._point,
x = point._x,
y = point._y,
handleIn = segment._handleIn;
if (i == 0) {
ctx.moveTo(x, y);
} else {
if (handleIn.isZero() && handleOut.isZero()) {
ctx.lineTo(x, y);
} else {
ctx.bezierCurveTo(outX, outY,
handleIn._x + x, handleIn._y + y,
x, y);
}
}
handleOut = segment._handleOut;
outX = handleOut._x + x;
outY = handleOut._y + y;
}
if (this.closed && length > 1) {
var segment = segments[0],
point = segment._point,
x = point._x,
y = point._y,
handleIn = segment._handleIn;
ctx.bezierCurveTo(outX, outY,
handleIn._x + x, handleIn._y + y, x, y);
ctx.closePath();
}
// If we are drawing the selection of a path, stroke it and draw
// its handles:
if (param.selection) {
ctx.stroke();
drawHandles(ctx, this._segments);
} else {
// If the path is part of a compound path or doesn't have a fill
// or stroke, there is no need to continue.
var fillColor = this.getFillColor(),
strokeColor = this.getStrokeColor();
if (!param.compound && (fillColor || strokeColor)) {
this._setStyles(ctx);
ctx.save();
// If the path only defines a strokeColor or a fillColor,
// draw it directly with the globalAlpha set, otherwise
// we will do it later when we composite the temporary
// canvas.
if (!fillColor || !strokeColor)
ctx.globalAlpha = this.opacity;
if (fillColor) {
ctx.fillStyle = fillColor.getCanvasStyle(ctx);
ctx.fill();
}
if (strokeColor) {
ctx.strokeStyle = strokeColor.getCanvasStyle(ctx);
ctx.stroke();
}
ctx.restore();
}
}
}
};
}, new function() { // Scope for segments list change detection
var segmentsFields = Base.each(
['pop', 'push', 'reverse', 'shift', 'sort', 'splice', 'unshift'],
function(name) {
var func = Array.prototype[name];
this[name] = function() {
return func.apply(this, arguments);
};
}, {});
return {
beans: true,
/**
* The segments contained within the path.
*/
getSegments: function() {
return this._segments;
},
setSegments: function(segments) {
var length = segments.length;
if (!this._segments) {
// Enhance the _segments array with functions that watch for
// change.
this._segments = Base.each(segmentsFields,
function(value, name) {
this[name] = value;
}, []);
} else {
this.setSelected(false);
this._segments.length = 0;
}
for(var i = 0; i < length; i++) {
this._add(Segment.read(segments, i, 1));
}
}
};
}, new function() { // Inject methods that require scoped privates
/**
* Solves a tri-diagonal system for one of coordinates (x or y) of first
* bezier control points.
*
* @param rhs right hand side vector.
* @return Solution vector.
*/
function getFirstControlPoints(rhs) {
var n = rhs.length,
x = [], // Solution vector.
tmp = [], // Temporary workspace.
b = 2;
x[0] = rhs[0] / b;
// Decomposition and forward substitution.
for (var i = 1; i < n; i++) {
tmp[i] = 1 / b;
b = (i < n - 1 ? 4 : 2) - tmp[i];
x[i] = (rhs[i] - x[i - 1]) / b;
}
// Back-substitution.
for (var i = 1; i < n; i++) {
x[n - i - 1] -= tmp[n - i] * x[n - i];
}
return x;
};
var styles = {
getStrokeWidth: 'lineWidth',
getStrokeJoin: 'lineJoin',
getStrokeCap: 'lineCap',
getMiterLimit: 'miterLimit'
};
return {
beans: true,
smooth: function() {
// This code is based on the work by Oleg V. Polikarpotchkin,
// http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry
// It was extended to support closed paths by averaging overlapping
// beginnings and ends. The result of this approach is very close to
// Polikarpotchkin's closed curve solution, but reuses the same
// algorithm as for open paths, and is probably executing faster as
// well, so it is preferred.
var segments = this._segments,
size = segments.length,
n = size,
// Add overlapping ends for averaging handles in closed paths
overlap;
if (size <= 2)
return;
if (this.closed) {
// Overlap up to 4 points since averaging beziers affect the 4
// neighboring points
overlap = Math.min(size, 4);
n += Math.min(size, overlap) * 2;
} else {
overlap = 0;
}
var knots = [];
for (var i = 0; i < size; i++)
knots[i + overlap] = segments[i]._point;
if (this.closed) {
// If we're averaging, add the 4 last points again at the
// beginning, and the 4 first ones at the end.
for (var i = 0; i < overlap; i++) {
knots[i] = segments[i + size - overlap]._point;
knots[i + size + overlap] = segments[i]._point;
}
} else {
n--;
}
// Calculate first Bezier control points
// Right hand side vector
var rhs = [];
// Set right hand side X values
for (var i = 1; i < n - 1; i++)
rhs[i] = 4 * knots[i]._x + 2 * knots[i + 1]._x;
rhs[0] = knots[0]._x + 2 * knots[1]._x;
rhs[n - 1] = 3 * knots[n - 1]._x;
// Get first control points X-values
var x = getFirstControlPoints(rhs);
// Set right hand side Y values
for (var i = 1; i < n - 1; i++)
rhs[i] = 4 * knots[i]._y + 2 * knots[i + 1]._y;
rhs[0] = knots[0]._y + 2 * knots[1]._y;
rhs[n - 1] = 3 * knots[n - 1]._y;
// Get first control points Y-values
var y = getFirstControlPoints(rhs);
if (this.closed) {
// Do the actual averaging simply by linearly fading between the
// overlapping values.
for (var i = 0, j = size; i < overlap; i++, j++) {
var f1 = (i / overlap);
var f2 = 1 - f1;
// Beginning
x[j] = x[i] * f1 + x[j] * f2;
y[j] = y[i] * f1 + y[j] * f2;
// End
var ie = i + overlap, je = j + overlap;
x[je] = x[ie] * f2 + x[je] * f1;
y[je] = y[ie] * f2 + y[je] * f1;
}
n--;
}
var handleIn = null;
// Now set the calculated handles
for (var i = overlap; i <= n - overlap; i++) {
var segment = segments[i - overlap];
if (handleIn)
segment.setHandleIn(handleIn.subtract(segment._point));
if (i < n) {
segment.setHandleOut(
new Point(x[i], y[i]).subtract(segment._point));
if (i < n - 1)
handleIn = new Point(
2 * knots[i + 1]._x - x[i + 1],
2 * knots[i + 1]._y - y[i + 1]);
else
handleIn = new Point(
(knots[n]._x + x[n - 1]) / 2,
(knots[n]._y + y[n - 1]) / 2);
}
}
if (this.closed && handleIn) {
var segment = this._segments[0];
segment.setHandleIn(handleIn.subtract(segment._point));
}
},
_setStyles: function(ctx) {
for (var i in styles) {
var style = this[i]();
if (style)
ctx[styles[i]] = style;
}
}
};
}, new function() { // PostScript-style drawing commands
function getCurrentSegment(that) {
var segments = that._segments;
if (segments.length == 0)
throw('Use a moveTo() command first');
return segments[segments.length - 1];
}
/**
* Helper method that returns the current segment and checks if we need to
* execute a moveTo() command first.
*/
return {
moveTo: function() {
var segment = new Segment(Point.read(arguments));
if (segment && !this._segments.length)
this._add(segment);
},
lineTo: function() {
var segment = new Segment(Point.read(arguments));
if (segment)
this._add(segment);
},
/**
* Adds a cubic bezier curve to the path, defined by two handles and a
* to point.
*/
cubicCurveTo: function(handle1, handle2, to) {
handle1 = Point.read(arguments, 0, 1);
handle2 = Point.read(arguments, 1, 1);
to = Point.read(arguments, 2, 1);
// First modify the current segment:
var current = getCurrentSegment(this);
// Convert to relative values:
current.setHandleOut(new Point(
handle1.x - current._point._x,
handle1.y - current._point._y));
// And add the new segment, with handleIn set to c2
this._add(new Segment(to, handle2.subtract(to), new Point()));
},
/**
* Adds a quadratic bezier curve to the path, defined by a handle and a
* to point.
*/
quadraticCurveTo: function(handle, to) {
handle = Point.read(arguments, 0, 1);
to = Point.read(arguments, 1, 1);
// This is exact:
// If we have the three quad points: A E D,
// and the cubic is A B C D,
// B = E + 1/3 (A - E)
// C = E + 1/3 (D - E)
var current = getCurrentSegment(this)._point;
this.cubicCurveTo(
handle.add(current.subtract(handle).multiply(1/3)),
handle.add(to.subtract(handle).multiply(1/3)),
to
);
},
curveTo: function(through, to, parameter) {
through = Point.read(arguments, 0, 1);
to = Point.read(arguments, 1, 1);
var t = Base.pick(parameter, 0.5),
t1 = 1 - t,
current = getCurrentSegment(this)._point,
// handle = (through - (1 - t)^2 * current - t^2 * to) /
// (2 * (1 - t) * t)
handle = through.subtract(current.multiply(t1 * t1))
.subtract(to.multiply(t * t)).divide(2 * t * t1);
if (handle.isNaN())
throw new Error(
"Cannot put a curve through points with parameter=" + t);
this.quadraticCurveTo(handle, to);
},
arcTo: function(to, clockwise) {
// Get the start point:
var current = getCurrentSegment(this),
through;
if (arguments[1] && typeof arguments[1] != 'boolean') {
through = Point.read(arguments, 0, 1);
to = Point.read(arguments, 1, 1);
} else {
to = Point.read(arguments, 0, 1);
if (clockwise === null)
clockwise = true;
var middle = current._point.add(to).divide(2),
step = middle.subtract(current._point);
through = clockwise
? middle.subtract(-step.y, step.x)
: middle.add(-step.y, step.x);
}
var x1 = current._point._x, x2 = through.x, x3 = to.x,
y1 = current._point._y, y2 = through.y, y3 = to.y,
f = x3 * x3 - x3 * x2 - x1 * x3 + x1 * x2 + y3 * y3 - y3 * y2
- y1 * y3 + y1 * y2,
g = x3 * y1 - x3 * y2 + x1 * y2 - x1 * y3 + x2 * y3 - x2 * y1,
m = g == 0 ? 0 : f / g,
c = (m * y2) - x2 - x1 - (m * y1),
d = (m * x1) - y1 - y2 - (x2 * m),
e = (x1 * x2) + (y1 * y2) - (m * x1 * y2) + (m * x2 * y1),
centerX = -c / 2,
centerY = -d / 2,
radius = Math.sqrt(centerX * centerX + centerY * centerY - e),
// Note: reversing the Y equations negates the angle to adjust
// for the upside down coordinate system.
angle = Math.atan2(centerY - y1, x1 - centerX),
middle = Math.atan2(centerY - y2, x2 - centerX),
extent = Math.atan2(centerY - y3, x3 - centerX),
diff = middle - angle;
if (diff < -Math.PI)
diff += Math.PI * 2;
else if (diff > Math.PI)
diff -= Math.PI * 2;
extent -= angle;
if (extent <= 0)
extent += Math.PI * 2;
if (diff < 0) extent = Math.PI * 2 - extent;
else extent = -extent;
angle = -angle;
var ext = Math.abs(extent),
arcSegs;
if (ext >= 2 * Math.PI) arcSegs = 4;
else arcSegs = Math.ceil(ext * 2 / Math.PI);
var inc = extent;
if (inc > 2 * Math.PI) inc = 2 * Math.PI;
else if (inc < -2 * Math.PI) inc = -2 * Math.PI;
inc /= arcSegs;
var halfInc = inc / 2,
z = 4 / 3 * Math.sin(halfInc) / (1 + Math.cos(halfInc));
for (var i = 0; i <= arcSegs; i++) {
var relx = Math.cos(angle),
rely = Math.sin(angle),
pt = new Point(
centerX + relx * radius,
centerY + rely * radius);
var out;
if (i == arcSegs) {
out = null;
} else {
out = new Point(
centerX + (relx - z * rely) * radius - pt.x,
centerY + (rely + z * relx) * radius - pt.y);
}
if (i == 0) {
// Modify startSegment
current.setHandleOut(out);
} else {
// Add new Segment
var handleIn = new Point(
centerX + (relx + z * rely) * radius - pt.x,
centerY + (rely - z * relx) * radius - pt.y);
this._add(new Segment(pt, handleIn, out));
}
angle += inc;
}
},
lineBy: function(vector) {
vector = Point.read(arguments);
var current = getCurrentSegment(this);
this.lineTo(current._point.add(vector));
},
curveBy: function(throughVector, toVector, parameter) {
throughVector = Point.read(throughVector);
toVector = Point.read(toVector);
var current = getCurrentSegment(this)._point;
this.curveTo(current.add(throughVector), current.add(toVector),
parameter);
},
arcBy: function(throughVector, toVector) {
throughVector = Point.read(throughVector);
toVector = Point.read(toVector);
var current = getCurrentSegment(this)._point;
this.arcBy(current.add(throughVector), current.add(toVector));
},
closePath: function() {
this.closed = true;
}
};
}, new function() { // A dedicated scope for the tricky bounds calculations
// Add some tolerance for good roots, as t = 0 / 1 are added seperately
// anyhow, and we don't want joins to be added with radiuses in
// getBounds()
var tMin = 10e-6, tMax = 1 - 10e-6;
function getBounds(that, matrix, strokePadding) {
// Code ported and further optimised from:
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
var segments = that._segments,
first = segments[0];
if (!first)
return null;
var coords = new Array(6),
prevCoords = new Array(6);
// Make coordinates for first segment available in prevCoords.
if (matrix && matrix.isIdentity())
matrix = null;
first._transformCoordinates(matrix, prevCoords, false);
var min = prevCoords.slice(0, 2),
max = min.slice(0); // clone
function processSegment(segment) {
segment._transformCoordinates(matrix, coords, false);
for (var i = 0; i < 2; i++) {
var v0 = prevCoords[i], // prev.point
v1 = prevCoords[i + 4], // prev.handleOut
v2 = coords[i + 2], // segment.handleIn
v3 = coords[i]; // segment.point
function add(value, t) {
var padding = 0;
if (value == null) {
// Calculate bezier polynomial at t
var u = 1 - t;
value = u * u * u * v0
+ 3 * u * u * t * v1
+ 3 * u * t * t * v2
+ t * t * t * v3;
// Only add strokeWidth to bounds for points which lie
// within 0 < t < 1. The corner cases for cap and join
// are handled in getStrokeBounds()
padding = strokePadding ? strokePadding[i] : 0;
}
var left = value - padding,
right = value + padding;
if (left < min[i])
min[i] = left;
if (right > max[i])
max[i] = right;
}
add(v3, null);
// Calculate derivative of our bezier polynomial, divided by 3.
// Dividing by 3 allows for simpler calculations of a, b, c and
// leads to the same quadratic roots below.
var a = 3 * (v1 - v2) - v0 + v3,
b = 2 * (v0 + v2) - 4 * v1,
c = v1 - v0;
// Solve for derivative for quadratic roots. Each good root
// (meaning a solution 0 < t < 1) is an extrema in the cubic
// polynomial and thus a potential point defining the bounds
if (a == 0) {
if (b == 0)
continue;
var t = -c / b;
// Test for good root and add to bounds if good (same below)
if (tMin < t && t < tMax)
add(null, t);
continue;
}
var b2ac = b * b - 4 * a * c;
if (b2ac < 0)
continue;
var sqrt = Math.sqrt(b2ac),
f = 1 / (a * -2),
t1 = (b - sqrt) * f,
t2 = (b + sqrt) * f;
if (tMin < t1 && t1 < tMax)
add(null, t1);
if (tMin < t2 && t2 < tMax)
add(null, t2);
}
// Swap coordinate buffers
var tmp = prevCoords;
prevCoords = coords;
coords = tmp;
}
for (var i = 1, l = segments.length; i < l; i++)
processSegment(segments[i]);
if (that.closed)
processSegment(first);
return Rectangle.create(min[0], min[1],
max[0] - min[0], max[1] - min[1]);
}
function getPenPadding(radius, matrix) {
if (!matrix)
return [radius, radius];
// If a matrix is provided, we need to rotate the stroke circle
// and calculate the bounding box of the resulting rotated elipse:
// Get rotated hor and ver vectors, and determine rotation angle
// and elipse values from them:
var mx = matrix.createShiftless(),
hor = mx.transform(new Point(radius, 0)),
ver = mx.transform(new Point(0, radius)),
phi = hor.getAngleInRadians(),
a = hor.getLength(),
b = ver.getLength();
// Formula for rotated ellipses:
// x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi)
// y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi)
// Derivates (by Wolfram Alpha):
// derivative of x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi)
// dx/dt = a sin(t) cos(phi) + b cos(t) sin(phi) = 0
// derivative of y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi)
// dy/dt = b cos(t) cos(phi) - a sin(t) sin(phi) = 0
// this can be simplified to:
// tan(t) = -b * tan(phi) / a // x
// tan(t) = b * cot(phi) / a // y
// Solving for t gives:
// t = pi * n - arctan(b tan(phi)) // x
// t = pi * n + arctan(b cot(phi)) // y
var tx = - Math.atan(b * Math.tan(phi)),
ty = + Math.atan(b / Math.tan(phi)),
// Due to symetry, we don't need to cycle through pi * n
// solutions:
x = a * Math.cos(tx) * Math.cos(phi)
- b * Math.sin(tx) * Math.sin(phi),
y = b * Math.sin(ty) * Math.cos(phi)
+ a * Math.cos(ty) * Math.sin(phi);
// Now update the join / round padding, as required by
// getBounds() and code below.
return [Math.abs(x), Math.abs(y)];
}
return {
beans: true,
/**
* The bounding rectangle of the item excluding stroke width.
* @param matrix optional
*/
getBounds: function(/* matrix */) {
// Pass the matrix hidden from Bootstrap, so it still inject
// getBounds as bean too.
var bounds = getBounds(this, arguments[0]);
return LinkedRectangle.create(this, 'setBounds',
bounds.x, bounds.y, bounds.width, bounds.height);
},
/**
* The bounding rectangle of the item including stroke width.
*/
getStrokeBounds: function(/* matrix */) {
var matrix = arguments[0], // set #getBounds()
width = this.getStrokeWidth(),
radius = width / 2,
padding = getPenPadding(radius, matrix),
join = this.getStrokeJoin(),
cap = this.getStrokeCap(),
// miter is relative to width. Divide it by 2 since we're
// measuring half the distance below
miter = this.getMiterLimit() * width / 2,
segments = this._segments,
length = segments.length,
closed= this.closed,
// It seems to be compatible with Ai we need to pass pen padding
// untransformed to getBounds()
bounds = getBounds(this, matrix, getPenPadding(radius));
// Create a rectangle of padding size, used for union with bounds
// further down
var joinBounds = new Rectangle(new Size(padding).multiply(2));
function add(point) {
bounds = bounds.include(matrix
? matrix.transform(point) : point);
}
function addBevelJoin(curve, t) {
var point = curve.getPoint(t),
normal = curve.getNormal(t).normalize(radius);
add(point.add(normal));
add(point.subtract(normal));
}
function addJoin(segment, join) {
var handleIn = segment.getHandleInIfSet(),
handleOut = segment.getHandleOutIfSet();
// When both handles are set in a segment, the join setting is
// ignored and round is always used.
if (join == 'round' || handleIn && handleOut) {
bounds = bounds.unite(joinBounds.setCenter(matrix
? matrix.transform(segment._point) : segment._point));
} else {
switch (join) {
case 'bevel':
var curve = segment.getCurve();
addBevelJoin(curve, 0);
addBevelJoin(curve.getPrevious(), 1);
break;
case 'miter':
var curve2 = segment.getCurve(),
curve1 = curve2.getPrevious(),
point = curve2.getPoint(0),
normal1 = curve1.getNormal(1).normalize(radius),
normal2 = curve2.getNormal(0).normalize(radius),
// Intersect the two lines
line1 = new Line(point.add(normal1),
new Point(-normal1.y, normal1.x)),
line2 = new Line(point.subtract(normal2),
new Point(-normal2.y, normal2.x)),
corner = line1.intersect(line2);
// Now measure the distance from the segment to the
// intersection, which his half of the miter distance
if (!corner || point.getDistance(corner) > miter) {
addJoin(segment, 'bevel');
} else {
add(corner);
}
break;
}
}
}
function addCap(segment, cap, t) {
switch (cap) {
case 'round':
return addJoin(segment, cap);
case 'butt':
case 'square':
// Calculate the corner points of butt and square caps
var curve = segment.getCurve(),
point = curve.getPoint(t),
normal = curve.getNormal(t).normalize(radius);
// For square caps, we need to step away from point in the
// direction of the tangent, which is the rotated normal
if (cap == 'square')
point = point.add(normal.y, -normal.x);
add(point.add(normal));
add(point.subtract(normal));
break;
}
}
for (var i = 1, l = length - (closed ? 0 : 1); i < l; i++) {
addJoin(segments[i], join);
}
if (closed) {
addJoin(segments[0], join);
} else {
addCap(segments[0], cap, 0);
addCap(segments[length - 1], cap, 1);
}
return bounds;
},
/**
* The bounding rectangle of the item including handles.
*/
getControlBounds: function() {
// TODO: Implement!
}
// TODO: intersects(item)
// TODO: contains(item)
// TODO: contains(point)
// TODO: intersect(item)
// TODO: unite(item)
// TODO: exclude(item)
// TODO: getIntersections(path)
};
});