paper.js/fatline/Intersect.js
2013-05-05 17:45:06 +02:00

342 lines
14 KiB
JavaScript

var EPSILON = 10e-12;
var TOLERANCE = 10e-6;
var _tolerence = EPSILON;
function getIntersections2( path1, path2 ){
var locations = [];
return locations;
}
paper.Curve.getIntersections2 = function( v1, v2, curve1, curve2, locations, _t1, _t2, _u1, _u2 ) {
_t1 = _t1 || 0; _t2 = _t2 || 1;
_u1 = _u1 || 0; _u2 = _u2 || 1;
var loc = { parameter: null };
var ret = _clipFatLine( v1, v2, 0, 1, 0, 1, true, curve1, curve2, loc );
if( ret === 1 ){
var parameter = _t1 + loc.parameter * ( _t2 - _t1 );
locations.push( new CurveLocation( curve1, parameter, curve1.getPoint(parameter), curve2 ) );
} else if( ret < 0) {
// We need to subdivide one of the curves
// Better if we can subdivide the longest curve
var v1lx = v1[6] - v1[0];
var v1ly = v1[7] - v1[1];
var v2lx = v2[6] - v2[0];
var v2ly = v2[7] - v2[1];
var sqrDist1 = v1lx * v1lx + v1ly * v1ly;
var sqrDist2 = v2lx * v2lx + v2ly * v2ly;
var parts;
// A quick and dirty way to determine which curve to subdivide
if( sqrDist1 > sqrDist2 ){
parts = Curve.subdivide( v1 );
nuT = ( _t1 + _t2 ) / 2;
Curve.getIntersections2( parts[0], v2, curve1, curve2, locations, _t1, nuT, _u1, _u2 );
Curve.getIntersections2( parts[1], v2, curve1, curve2, locations, nuT, _t2, _u1, _u2 );
} else {
parts = Curve.subdivide( v2 );
nuU = ( _u1 + _u2 ) / 2;
Curve.getIntersections2( v1, parts[0], curve1, curve2, locations, _t1, _t2, _u1, nuU );
Curve.getIntersections2( v1, parts[1], curve1, curve2, locations, _t1, _t2, nuU, _u2 );
}
}
};
function _clipFatLine( v1, v2, t1, t2, u1, u2, tvalue, curve1, curve2, location ){
if( t1 >= t2 - _tolerence && t1 <= t2 + _tolerence && u1 >= u2 - _tolerence && u1 <= u2 + _tolerence ){
location.parameter = u1;
return 1;
} else {
var p0x = v1[0], p0y = v1[1];
var p3x = v1[6], p3y = v1[7];
var p1x = v1[2], p1y = v1[3];
var p2x = v1[4], p2y = v1[5];
var q0x = v2[0], q0y = v2[1];
var q3x = v2[6], q3y = v2[7];
var q1x = v2[2], q1y = v2[3];
var q2x = v2[4], q2y = v2[5];
// Calculate the fat-line L
var d1 = _getSignedDist( p0x, p0y, p3x, p3y, p1x, p1y );
var d2 = _getSignedDist( p0x, p0y, p3x, p3y, p2x, p2y );
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
}
// The convex hull for the non-parametric bezier curve D(ti, di(t))
var dq0 = _getSignedDist( p0x, p0y, p3x, p3y, q0x, q0y );
var dq1 = _getSignedDist( p0x, p0y, p3x, p3y, q1x, q1y );
var dq2 = _getSignedDist( p0x, p0y, p3x, p3y, q2x, q2y );
var dq3 = _getSignedDist( p0x, p0y, p3x, p3y, q3x, q3y );
var mindist = Math.min( dq0, dq1, dq2, dq3 );
var maxdist = Math.max( dq0, dq1, dq2, dq3 );
// If the fatlines don't overlap, we have no intersections!
if( dmin > maxdist || dmax < mindist ){
return 0;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
var Dt = _convexhull( dq0, dq1, dq2, dq3 );
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values
var tmindmin = Infinity, tmaxdmin = -Infinity,
tmindmax = Infinity, tmaxdmax = -Infinity, ixd, ixdx, i, len;
var dmina = [0, dmin, 2, dmin];
var dmaxa = [0, dmax, 2, dmax];
for (i = 0, len = Dt.length; i < len; i++) {
var Dtl = Dt[i];
// ixd = Dtl.intersect( vecdmin );
ixd = _intersectLines( Dtl, dmina);
if( ixd ){
ixdx = ixd[0];
tmindmin = ( ixdx < tmindmin )? ixdx : tmindmin;
tmaxdmin = ( ixdx > tmaxdmin )? ixdx : tmaxdmin;
}
// ixd = Dtl.intersect( vecdmax );
ixd = _intersectLines( Dtl, dmaxa);
if( ixd ){
ixdx = ixd[0];
tmindmax = ( ixdx < tmindmax )? ixdx : tmindmax;
tmaxdmax = ( ixdx > tmaxdmax )? ixdx : tmaxdmax;
}
}
// if dmin doesnot intersect with the convexhull, reset it to 0
tmindmin = ( tmindmin === Infinity )? 0 : tmindmin;
tmaxdmin = ( tmaxdmin === -Infinity )? 0 : tmaxdmin;
// if dmax doesnot intersect with the convexhull, reset it to 1
tmindmax = ( tmindmax === Infinity )? 1 : tmindmax;
tmaxdmax = ( tmaxdmax === -Infinity )? 1 : tmaxdmax;
var tmin = Math.min( tmindmin, tmaxdmin, tmindmax, tmaxdmax );
var tmax = Math.max( tmindmin, tmaxdmin, tmindmax, tmaxdmax);
// We need to toggle clipping both curves alternatively
// tvalue indicates whether to compare t or u for testing for convergence
var nuV2 = Curve.getPart( v2, tmin, tmax );
var convRate, parts;
if( tvalue ){
nuT1 = t1 + tmin * ( t2 - t1 );
nuT2 = t1 + tmax * ( t2 - t1 );
// Test the convergence rate
// if the clipping fails to converge by atleast 20%,
// we need to subdivide the longest curve and try again.
var td = ( t2 - t1 );
convRate = ( td - ( nuT2 - nuT1 ) ) / td;
// console.log( 'convergence rate for t = ' + convRate + "%" );
if( convRate <= 0.2) {
// subdivide the curve and try again
return -1;
} else {
return _clipFatLine( nuV2, v1, nuT1, nuT2, u1, u2, !tvalue, curve1, curve2, location );
}
} else {
nuU1 = u1 + tmin * ( u2 - u1 );
nuU2 = u1 + tmax * ( u2 - u1 );
var ud = ( u2 - u1 );
convRate = ( ud - ( nuU2 - nuU1 ) ) / ud;
// console.log( 'convergence rate for u = ' + convRate + "%" );
if( convRate <= 0.2) {
// subdivide the curve and try again
return -1;
} else {
return _clipFatLine( nuV2, v1, t1, t2, nuU1, nuU2 , !tvalue, curve1, curve2, location );
}
}
}
}
/**
* Clip curve values V2 with fat-line of v1 and vice versa
* @param {Array} v - Section of the first curve, for which we will make a fat-line
* @param {Number} t1 - start parameter for v in vOrg
* @param {Number} t2 - end parameter for v in vOrg
* @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v
* @param {Number} u1 - start parameter for v2 in v2Org
* @param {Number} u2 - end parameter for v2 in v2Org
* @param {Array} vOrg - The original curve values for v
* @param {Array} v2Org - The original curve values for v2
* @return {[type]}
*/
function _clipBezFatLine( v1, t1, t2, v2, u1, u2, vOrg, v2Org ){
}
function _convexhull( dq0, dq1, dq2, dq3 ){
// Prepare the convex hull for D(ti, di(t))
var distq1 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.3333333333333333, dq1 );
var distq2 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.6666666666666666, dq2 );
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3]
if( distq1 * distq2 < 0 ) {
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
// Convexhull is a quadrilatteral and line [0, q0, 1, q3] is NOT part of the convexhull
// so we are pretty much done here.
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 1.0, dq3 ],
[ 0.6666666666666666, dq2, 0.0, dq0 ],
[ 1.0, dq3, 0.6666666666666666, dq2 ]
];
} else {
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]
// Convexhull can be a triangle or a quadrilatteral and
// line [0, q0, 1, q3] is part of the convexhull.
// Check if the hull is a triangle or a quadrilatteral
var dqmin, dqmax, dqapex1, dqapex2;
distq1 = Math.abs(distq1);
distq2 = Math.abs(distq2);
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
if( distq1 > distq2 ){
dqmin = [ 0.6666666666666666, dq2 ];
dqmax = [ 0.3333333333333333, dq1 ];
// apex is dq3 and the other apex point is dq0
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = 1.0, vqa1a2y = dq3 - dq0;
// vector dqapex->dqmax
vqa1Maxx = 0.6666666666666666, vqa1Maxy = dq3 - dq1;
// vector dqapex->dqmin
vqa1Minx = 0.3333333333333333, vqa1Miny = dq3 - dq2;
} else {
dqmin = [ 0.3333333333333333, dq1 ];
dqmax = [ 0.6666666666666666, dq2 ];
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = -1.0, vqa1a2y = dq0 - dq3;
// vector dqapex->dqmax
vqa1Maxx = -0.6666666666666666, vqa1Maxy = dq0 - dq2;
// vector dqapex->dqmin
vqa1Minx = -0.3333333333333333, vqa1Miny = dq0 - dq1;
}
// compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var vcrossa1a2_a1Max = vqa1a2x * vqa1Maxy - vqa1a2y * vqa1Maxx;
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
if( vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0 ){
// Point [2/3, dq2] is inside the triangle and the convex hull is a triangle
Dt = [
[ 0.0, dq0, dqmax[0], dqmax[1] ],
[ dqmax[0], dqmax[1], 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
} else {
// Convexhull is a quadrilatteral and we need all lines in the correct order where
// line [0, q0, 1, q3] is part of the convex hull
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 0.6666666666666666, dq2 ],
[ 0.6666666666666666, dq2, 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
}
}
return Dt;
}
function drawFatline( v1 ) {
var l = new Line( [v1[0], v1[1]], [v1[6], v1[7]], false );
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
var d1 = l.getSide( p1 ) * l.getDistance( p1 );
var d2 = l.getSide( p2 ) * l.getDistance( p2 );
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
}
var ll = new Path.Line( v1[0], v1[1], v1[6], v1[7] );
ll.style.strokeColor = new Color( 0,0,0.9, 0.8);
var lp1 = ll.segments[0].point;
var lp2 = ll.segments[1].point;
var pm = l.vector, pm1 = pm.rotate( signum( dmin ) * -90 ), pm2 = pm.rotate( signum( dmax ) * -90 );
var p11 = lp1.add( pm1.normalize( Math.abs(dmin) ) );
var p12 = lp2.add( pm1.normalize( Math.abs(dmin) ) );
var p21 = lp1.add( pm2.normalize( Math.abs(dmax) ) );
var p22 = lp2.add( pm2.normalize( Math.abs(dmax) ) );
ll = new Path.Line( p11, p12 );
ll.style.strokeColor = new Color( 0,0,0.9);
ll = new Path.Line( p21, p22 );
ll.style.strokeColor = new Color( 0,0,0.9);
}
function plotD_vs_t( x, y, arr, dmin, dmax, tmin, tmax, yscale, tvalue ){
yscale = yscale || 1;
new Path.Line( x, y-100, x, y+100 ).style.strokeColor = '#aaa';
new Path.Line( x, y, x + 200, y ).style.strokeColor = '#aaa';
var clr = (tvalue)? '#a00' : '#00a';
new Path.Line( x, y + dmin * yscale, x + 200, y + dmin * yscale ).style.strokeColor = '#000';
new Path.Line( x, y + dmax * yscale, x + 200, y + dmax * yscale ).style.strokeColor = '#000';
new Path.Line( x + tmin * 190, y-100, x + tmin * 190, y+100 ).style.strokeColor = clr;
new Path.Line( x + tmax * 190, y-100, x + tmax * 190, y+100 ).style.strokeColor = clr;
var pnt = [];
for (var i = 0; i < arr.length; i++) {
// pnt.push( new Point( x + arr[i].point.x * 190, y + arr[i].point.y * yscale ) );
pnt.push( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ) );
var pth = new Path.Line( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ),
new Point( x + arr[i][2] * 190, y + arr[i][3] * yscale ) );
pth.style.strokeColor = '#999';
}
// var pth = new Path( pnt[0], pnt[1], pnt[2], pnt[3] );
// pth.closed = true;
new Path( new Segment(pnt[0], null, pnt[1].subtract(pnt[0])), new Segment( pnt[3], pnt[2].subtract(pnt[3]), null ) ).style.strokeColor = clr;
}
function signum(num) {
return ( num > 0 )? 1 : ( num < 0 )? -1 : 0;
}
var _intersectLines = function(v1, v2) {
var result, a1x, a2x, b1x, b2x, a1y, a2y, b1y, b2y;
a1x = v1[0]; a1y = v1[1];
a2x = v1[2]; a2y = v1[3];
b1x = v2[0]; b1y = v2[1];
b2x = v2[2]; b2y = v2[3];
var ua_t = (b2x - b1x) * (a1y - b1y) - (b2y - b1y) * (a1x - b1x);
var ub_t = (a2x - a1x) * (a1y - b1y) - (a2y - a1y) * (a1x - b1x);
var u_b = (b2y - b1y) * (a2x - a1x) - (b2x - b1x) * (a2y - a1y);
if ( u_b !== 0 ) {
var ua = ua_t / u_b;
var ub = ub_t / u_b;
if ( 0 <= ua && ua <= 1 && 0 <= ub && ub <= 1 ) {
return [a1x + ua * (a2x - a1x), a1y + ua * (a2y - a1y)];
}
}
};
var _getSignedDist = function( a1x, a1y, a2x, a2y, bx, by ){
var vx = a2x - a1x, vy = a2y - a1y;
var bax = bx - a1x, bay = by - a1y;
var ba2x = bx - a2x, ba2y = by - a2y;
// ba *cross* v
var cvb = bax * vy - bay * vx;
if (cvb === 0) {
cvb = bax * vx + bay * vy;
if (cvb > 0) {
cvb = (bax - vx) * vx + (bay -vy) * vy;
if (cvb < 0){ cvb = 0; }
}
}
var side = cvb < 0 ? -1 : cvb > 0 ? 1 : 0;
// Calculate the distance
var m = vy / vx, b = a1y - ( m * a1x );
var dist = Math.abs( by - ( m * bx ) - b ) / Math.sqrt( m*m + 1 );
var dista1 = Math.sqrt( bax * bax + bay * bay );
var dista2 = Math.sqrt( ba2x * ba2x + ba2y * ba2y );
return side * Math.min( dist, dista1, dista2 );
};