mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-07 13:22:07 -05:00
Switch back to Kaspar Fischer's version of Curve.isFlatEnough, as it produces the best results with dashed lines.
This commit is contained in:
parent
3dfb4d3ae5
commit
fdd4ee8d31
1 changed files with 18 additions and 8 deletions
|
@ -538,6 +538,7 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
|
|||
// and optimised for cubic bezier curves.
|
||||
// Derive the implicit equation for line connecting first and last
|
||||
// control points
|
||||
/*
|
||||
var p1x = v[0], p1y = v[1],
|
||||
c1x = v[2], c1y = v[3],
|
||||
c2x = v[4], c2y = v[5],
|
||||
|
@ -551,7 +552,7 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
|
|||
v2 = a * c2x + b * c2y + c;
|
||||
// Compute intercepts of bounding box
|
||||
return Math.abs((v1 * v1 + v2 * v2) / (a * (a * a + b * b))) < 0.005;
|
||||
/*
|
||||
*/
|
||||
// Inspired by Skia, but to be tested:
|
||||
// Calculate 1/3 (m1) and 2/3 (m2) along the line between start (p1)
|
||||
// and end (p2), measure distance from there the control points and
|
||||
|
@ -559,7 +560,13 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
|
|||
// Seems all very inaccurate, especially since the distance
|
||||
// measurement is just the bigger one of x / y...
|
||||
// TODO: Find a more accurate and still fast way to determine this.
|
||||
var vx = (p2x - p1x) / 3,
|
||||
/*
|
||||
var p1x = v[0], p1y = v[1],
|
||||
c1x = v[2], c1y = v[3],
|
||||
c2x = v[4], c2y = v[5],
|
||||
p2x = v[6], p2y = v[7],
|
||||
|
||||
vx = (p2x - p1x) / 3,
|
||||
vy = (p2y - p1y) / 3,
|
||||
m1x = p1x + vx,
|
||||
m1y = p1y + vy,
|
||||
|
@ -569,16 +576,20 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
|
|||
Math.abs(m1x - c1x), Math.abs(m1y - c1y),
|
||||
Math.abs(m2x - c1x), Math.abs(m1y - c1y)) < 1 / 2;
|
||||
*/
|
||||
/*
|
||||
// Thanks to Kaspar Fischer for the following:
|
||||
// http://www.inf.ethz.ch/personal/fischerk/pubs/bez.pdf
|
||||
var ux = 3 * c1x - 2 * p1x - p2x;
|
||||
var p1x = v[0], p1y = v[1],
|
||||
c1x = v[2], c1y = v[3],
|
||||
c2x = v[4], c2y = v[5],
|
||||
p2x = v[6], p2y = v[7],
|
||||
|
||||
ux = 3 * c1x - 2 * p1x - p2x,
|
||||
uy = 3 * c1y - 2 * p1y - p2y,
|
||||
vx = 3 * c2x - 2 * p2x - p1x,
|
||||
vy = 3 * c2y - 2 * p2y - p1y;
|
||||
ux *= ux;
|
||||
var uy = 3 * c1y - 2 * p1y - p2y;
|
||||
uy *= uy;
|
||||
var vx = 3 * c2x - 2 * p2x - p1x;
|
||||
vx *= vx;
|
||||
var vy = 3 * c2y - 2 * p2y - p1y;
|
||||
vy *= vy;
|
||||
if (ux < vx)
|
||||
ux = vx;
|
||||
|
@ -586,7 +597,6 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
|
|||
uy = vy;
|
||||
// Tolerance is 16 * tol ^ 2
|
||||
return ux + uy <= 16 * Numerical.TOLERNACE * Numerical.TOLERNACE;
|
||||
*/
|
||||
}
|
||||
}
|
||||
}, new function() { // Scope for methods that require numerical integration
|
||||
|
|
Loading…
Reference in a new issue