Fix issues in Numerical.solveQuadratic(), solveCubic() and Path#contains().

Closes #71.
This commit is contained in:
Jürg Lehni 2012-10-22 18:21:33 -04:00
parent 63640cad03
commit f73717a7e7
3 changed files with 48 additions and 43 deletions

View file

@ -319,7 +319,7 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
crossings = 0; crossings = 0;
for (var i = 0; i < num; i++) { for (var i = 0; i < num; i++) {
var t = roots[i]; var t = roots[i];
if (t >= 0 && t < 1 && Curve.evaluate(vals, t, 0).x > point.x) { if (t >= 0 && t <= 1 && Curve.evaluate(vals, t, 0).x > point.x) {
// If we're close to 0 and are not changing y-direction from the // If we're close to 0 and are not changing y-direction from the
// previous curve, do not count this root, as we're merely // previous curve, do not count this root, as we're merely
// touching a tip. Passing 1 for Curve.evaluate()'s type means // touching a tip. Passing 1 for Curve.evaluate()'s type means
@ -665,7 +665,7 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
*/ */
function toBezierForm(v, point) { function toBezierForm(v, point) {
var n = 3, // degree of B(t) var n = 3, // degree of B(t)
degree = 5, // degree of B(t) . P degree = 5, // degree of B(t) . P
c = [], c = [],
d = [], d = [],
cd = [], cd = [],

View file

@ -558,7 +558,7 @@ var Path = this.Path = PathItem.extend(/** @lends Path# */{
*/ */
removeSegments: function(from, to) { removeSegments: function(from, to) {
from = from || 0; from = from || 0;
to = Base.pick(to, this._segments.length); to = Base.pick(to, this._segments.length);
var segments = this._segments, var segments = this._segments,
curves = this._curves, curves = this._curves,
last = to >= segments.length, last = to >= segments.length,

View file

@ -58,9 +58,15 @@ var Numerical = new function() {
// Math short-cuts for often used methods and values // Math short-cuts for often used methods and values
var abs = Math.abs, var abs = Math.abs,
sqrt = Math.sqrt, sqrt = Math.sqrt,
pow = Math.pow,
cos = Math.cos, cos = Math.cos,
PI = Math.PI; PI = Math.PI;
// Define the missing Math.cbrt()
function cbrt(x) {
return x > 0 ? pow(x, 1 / 3) : x < 0 ? -pow(-x, 1 / 3) : 0;
}
return { return {
TOLERANCE: 10e-6, TOLERANCE: 10e-6,
// Precision when comparing against 0 // Precision when comparing against 0
@ -121,33 +127,26 @@ var Numerical = new function() {
* a*x^2 + b*x + c = 0 * a*x^2 + b*x + c = 0
*/ */
solveQuadratic: function(a, b, c, roots, tolerance) { solveQuadratic: function(a, b, c, roots, tolerance) {
// After Numerical Recipes in C, 2nd edition, Press et al., // Code ported over and adapted from Uintah library (MIT license).
// 5.6, Quadratic and Cubic Equations
// If problem is actually linear, return 0 or 1 easy roots // If problem is actually linear, return 0 or 1 easy roots
if (abs(a) < tolerance) { if (abs(a) < tolerance) {
if (abs(b) >= tolerance) { if (abs(b) >= tolerance) {
roots[0] = -c / b; roots[0] = -c / b;
return 1; return 1;
} }
// If all the coefficients are 0, infinite values are // If all the coefficients are 0, we have infinite solutions!
// possible! return abs(c) < tolerance ? -1 : 0; // Infinite or 0 solutions
if (abs(c) < tolerance)
return -1; // Infinite solutions
return 0; // 0 solutions
} }
var q = b * b - 4 * a * c; var q = b * b - 4 * a * c;
if (q < 0) if (q < 0)
return 0; // 0 solutions return 0; // 0 solutions
q = sqrt(q); q = sqrt(q);
if (b < 0) a *= 2; // Prepare division by (2 * a)
q = -q;
q = (b + q) * -0.5;
var n = 0; var n = 0;
if (abs(q) >= tolerance) roots[n++] = (-b - q) / a;
roots[n++] = c / q; if (q > 0)
if (abs(a) >= tolerance) roots[n++] = (-b + q) / a;
roots[n++] = q / a; return n; // 1 or 2 solutions
return n; // 0, 1 or 2 solutions
}, },
/** /**
@ -157,37 +156,43 @@ var Numerical = new function() {
* a*x^3 + b*x^2 + c*x + d = 0 * a*x^3 + b*x^2 + c*x + d = 0
*/ */
solveCubic: function(a, b, c, d, roots, tolerance) { solveCubic: function(a, b, c, d, roots, tolerance) {
// After Numerical Recipes in C, 2nd edition, Press et al., // Code ported over and adapted from Uintah library (MIT license).
// 5.6, Quadratic and Cubic Equations
if (abs(a) < tolerance) if (abs(a) < tolerance)
return Numerical.solveQuadratic(b, c, d, roots, tolerance); return Numerical.solveQuadratic(b, c, d, roots, tolerance);
// Normalize // Normalize to form: x^3 + b x^2 + c x + d = 0:
b /= a; b /= a;
c /= a; c /= a;
d /= a; d /= a;
// Compute discriminants // Compute discriminants
var Q = (b * b - 3 * c) / 9, var bb = b * b,
R = (2 * b * b * b - 9 * b * c + 27 * d) / 54, p = 1 / 3 * (-1 / 3 * bb + c),
Q3 = Q * Q * Q, q = 1 / 2 * (2 / 27 * b * bb - 1 / 3 * b * c + d),
R2 = R * R; // Use Cardano's formula
b /= 3; // Divide by 3 as that's required below ppp = p * p * p,
if (R2 < Q3) { // Three real roots D = q * q + ppp;
// This sqrt and division is safe, since R2 >= 0, so Q3 > R2, // Substitute x = y - b/3 to eliminate quadric term: x^3 +px + q = 0
// so Q3 > 0. The acos is also safe, since R2/Q3 < 1, and b /= 3;
// thus R/sqrt(Q3) < 1. if (abs(D) < tolerance) {
var theta = Math.acos(R / sqrt(Q3)), if (abs(q) < tolerance) { // One triple solution.
// This sqrt is safe, since Q3 >= 0, and thus Q >= 0 roots[0] = - b;
q = -2 * sqrt(Q); return 1;
roots[0] = q * cos(theta / 3) - b; } else { // One single and one double solution.
roots[1] = q * cos((theta + 2 * PI) / 3) - b; var u = cbrt(-q);
roots[2] = q * cos((theta - 2 * PI) / 3) - b; roots[0] = 2 * u - b;
return 3; roots[1] = - u - b;
} else { // One real root return 2;
var A = -Math.pow(abs(R) + sqrt(R2 - Q3), 1 / 3); }
if (R < 0) A = -A; } else if (D < 0) { // Casus irreducibilis: three real solutions
var B = (abs(A) < tolerance) ? 0 : Q / A; var phi = 1 / 3 * Math.acos(-q / sqrt(-ppp));
roots[0] = (A + B) - b; var t = 2 * sqrt(-p);
return 1; roots[0] = t * cos(phi) - b;
roots[1] = - t * cos(phi + PI / 3) - b;
roots[2] = - t * cos(phi - PI / 3) - b;
return 3;
} else { // One real solution
D = sqrt(D);
roots[0] = cbrt(D - q) - cbrt(D + q) - b;
return 1;
} }
} }
}; };