mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-05 20:32:00 -05:00
Fix regression issues with Curve-Line intersection code
This commit is contained in:
parent
dfa1687a90
commit
f0434548c6
1 changed files with 36 additions and 30 deletions
|
@ -1356,10 +1356,8 @@ new function() { // Scope for methods that require numerical integration
|
|||
/*#*/ } // options.fatline
|
||||
|
||||
/**
|
||||
* Intersections between curve and line becomes rather simple here mostly
|
||||
* because of Numerical class. We can rotate the curve and line so that the
|
||||
* line is on the X axis, and solve the implicit equations for the X axis
|
||||
* and the curve.
|
||||
* Intersections between curve and line based on the algebraic method
|
||||
* described at http://www.particleincell.com/blog/2013/cubic-line-intersection/
|
||||
*/
|
||||
function addCurveLineIntersections(v1, v2, curve1, curve2, locations) {
|
||||
var flip = Curve.isLinear(v1),
|
||||
|
@ -1367,38 +1365,46 @@ new function() { // Scope for methods that require numerical integration
|
|||
vl = flip ? v1 : v2,
|
||||
l1x = vl[0], l1y = vl[1],
|
||||
l2x = vl[6], l2y = vl[7],
|
||||
// Rotate both curve and line around l1 so that line is on x axis
|
||||
lvx = l2x - l1x,
|
||||
lvy = l2y - l1y,
|
||||
// Angle with x axis (1, 0)
|
||||
angle = Math.atan2(-lvy, lvx),
|
||||
sin = Math.sin(angle),
|
||||
cos = Math.cos(angle),
|
||||
// (rl1x, rl1y) = (0, 0)
|
||||
rl2x = lvx * cos - lvy * sin,
|
||||
vcr = [];
|
||||
vc0 = vc[0], vc1 = vc[1], vc2 = vc[2], vc3 = vc[3],
|
||||
vc4 = vc[4], vc5 = vc[5],
|
||||
// Equation of the line Ax + By + C = 0
|
||||
A = l2y-l1y, //A=y2-y1
|
||||
B = l1x-l2x, //B=x1-x2
|
||||
C = l1x*(l1y-l2y) + l1y*(l2x-l1x), //C=x1*(y1-y2)+y1*(x2-x1)
|
||||
// Bernstein coefficients for the curve
|
||||
bx0 = -vc0 + 3*vc2 + -3*vc4 + vc[6],
|
||||
bx1 = 3*vc0 - 6*vc2 + 3*vc4,
|
||||
bx2 = -3*vc0 + 3*vc2,
|
||||
bx3 = vc0,
|
||||
by0 = -vc1 + 3*vc3 + -3*vc5 + vc[7],
|
||||
by1 = 3*vc1 - 6*vc3 + 3*vc5,
|
||||
by2 = -3*vc1 + 3*vc3,
|
||||
by3 = vc1,
|
||||
// Form the cubic equation
|
||||
// a*t^3 + b*t^2 + c*t + d = 0
|
||||
a = A*bx0 + B*by0, /*t^3*/
|
||||
b = A*bx1 + B*by1, /*t^2*/
|
||||
c = A*bx2 + B*by2, /*t*/
|
||||
d = A*bx3 + B*by3 + C, /*1*/
|
||||
roots = [], count, x0, x1, t, tl;
|
||||
|
||||
for(var i = 0; i < 8; i += 2) {
|
||||
var x = vc[i] - l1x,
|
||||
y = vc[i + 1] - l1y;
|
||||
vcr.push(
|
||||
x * cos - y * sin,
|
||||
y * cos + x * sin);
|
||||
}
|
||||
var roots = [],
|
||||
count = Curve.solveCubic(vcr, 1, 0, roots);
|
||||
// Solve the cubic equation
|
||||
count = Numerical.solveCubic(a, b, c, d, roots);
|
||||
// NOTE: count could be -1 for inifnite solutions, but that should only
|
||||
// happen with lines, in which case we should not be here.
|
||||
for (var i = 0; i < count; i++) {
|
||||
var t = roots[i];
|
||||
if (t >= 0 && t <= 1) {
|
||||
var point = Curve.evaluate(vcr, t, 0);
|
||||
for (var i=0;i<count;i++) {
|
||||
t = roots[i];
|
||||
if(t >= 0 && t <= 1.0){
|
||||
x0 = bx0*t*t*t + bx1*t*t + bx2*t + bx3;
|
||||
x1 = by0*t*t*t + by1*t*t + by2*t + by3;
|
||||
// We do have a point on the infinite line. Check if it falls on
|
||||
// the line *segment*.
|
||||
if (point.x >= 0 && point.x <= rl2x) {
|
||||
// tl is the parameter of the intersection point in line segment.
|
||||
// First check if line is vertical
|
||||
tl = (l2x-l1x) != 0 ? (x0-l1x)/(l2x-l1x) : (x1-l1y)/(l2y-l1y);
|
||||
if(tl >= 0 && tl <= 1.0){
|
||||
// Interpolate the parameter for the intersection on line.
|
||||
var tl = point.x / rl2x,
|
||||
t1 = flip ? tl : t,
|
||||
var t1 = flip ? tl : t,
|
||||
t2 = flip ? t : tl;
|
||||
addLocation(locations,
|
||||
curve1, t1, Curve.evaluate(v1, t1, 0),
|
||||
|
|
Loading…
Reference in a new issue