mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-20 22:39:50 -05:00
Optimize fat-line clipping code a bit further.
We don't need to calculate v1Clip and tDiff if oldTDiff > 0.5 && tDiff > 0.5.
This commit is contained in:
parent
f19bdf9834
commit
df24de0fdf
1 changed files with 39 additions and 37 deletions
|
@ -1465,21 +1465,17 @@ new function() { // Scope for intersection using bezier fat-line clipping
|
||||||
(tMaxClip = clipConvexHull(top.reverse(), bottom.reverse(),
|
(tMaxClip = clipConvexHull(top.reverse(), bottom.reverse(),
|
||||||
dMin, dMax)) == null)
|
dMin, dMax)) == null)
|
||||||
return;
|
return;
|
||||||
// Clip P with the fat-line for Q
|
// tMin and tMax are within the range (0, 1). We need to project it
|
||||||
var v1New = Curve.getPart(v1, tMinClip, tMaxClip),
|
// to the original parameter range for v2.
|
||||||
tDiff = tMaxClip - tMinClip,
|
var tMinNew = tMin + (tMax - tMin) * tMinClip,
|
||||||
// tMin and tMax are within the range (0, 1). We need to project it
|
|
||||||
// to the original parameter range for v2.
|
|
||||||
tMinNew = tMin + (tMax - tMin) * tMinClip,
|
|
||||||
tMaxNew = tMin + (tMax - tMin) * tMaxClip;
|
tMaxNew = tMin + (tMax - tMin) * tMaxClip;
|
||||||
if (Math.max(uMax - uMin, tMaxNew - tMinNew)
|
if (Math.max(uMax - uMin, tMaxNew - tMinNew)
|
||||||
< /*#=*/Numerical.CLIPPING_EPSILON) {
|
< /*#=*/Numerical.CLIPPING_EPSILON) {
|
||||||
// We have isolated the intersection with sufficient precision
|
// We have isolated the intersection with sufficient precision
|
||||||
var t = (tMinNew + tMaxNew) / 2,
|
var t = (tMinNew + tMaxNew) / 2,
|
||||||
u = (uMin + uMax) / 2;
|
u = (uMin + uMax) / 2;
|
||||||
// Since we've been chopping up v1 and v2, we need to pass on the
|
// As we've been clipping v1 and v2, we need to pass on the original
|
||||||
// original full curves here again to match the parameter space of
|
// curves here again to match the parameter space of t1 and t2.
|
||||||
// t1 and t2.
|
|
||||||
// TODO: Add two more arguments to addCurveIntersections after param
|
// TODO: Add two more arguments to addCurveIntersections after param
|
||||||
// to pass on the sub-curves.
|
// to pass on the sub-curves.
|
||||||
v1 = c1.getValues();
|
v1 = c1.getValues();
|
||||||
|
@ -1487,35 +1483,41 @@ new function() { // Scope for intersection using bezier fat-line clipping
|
||||||
addLocation(locations, param,
|
addLocation(locations, param,
|
||||||
reverse ? v2 : v1, reverse ? c2 : c1, reverse ? u : t, null,
|
reverse ? v2 : v1, reverse ? c2 : c1, reverse ? u : t, null,
|
||||||
reverse ? v1 : v2, reverse ? c1 : c2, reverse ? t : u, null);
|
reverse ? v1 : v2, reverse ? c1 : c2, reverse ? t : u, null);
|
||||||
} else if (oldTDiff > 0.5 && tDiff > 0.5) {
|
|
||||||
// Subdivide the curve which has converged the least.
|
|
||||||
if (tMaxNew - tMinNew > uMax - uMin) {
|
|
||||||
var parts = Curve.subdivide(v1New, 0.5),
|
|
||||||
t = (tMinNew + tMaxNew) / 2;
|
|
||||||
addCurveIntersections(
|
|
||||||
v2, parts[0], c2, c1, locations, param,
|
|
||||||
uMin, uMax, tMinNew, t, tDiff, !reverse, recursion);
|
|
||||||
addCurveIntersections(
|
|
||||||
v2, parts[1], c2, c1, locations, param,
|
|
||||||
uMin, uMax, t, tMaxNew, tDiff, !reverse, recursion);
|
|
||||||
} else {
|
|
||||||
var parts = Curve.subdivide(v2, 0.5),
|
|
||||||
u = (uMin + uMax) / 2;
|
|
||||||
addCurveIntersections(
|
|
||||||
parts[0], v1New, c2, c1, locations, param,
|
|
||||||
uMin, u, tMinNew, tMaxNew, tDiff, !reverse, recursion);
|
|
||||||
addCurveIntersections(
|
|
||||||
parts[1], v1New, c2, c1, locations, param,
|
|
||||||
u, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
|
|
||||||
}
|
|
||||||
} else if (tDiff > 0) { // Iterate
|
|
||||||
addCurveIntersections(v2, v1New, c2, c1, locations, param,
|
|
||||||
uMin, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
|
|
||||||
} else {
|
} else {
|
||||||
// curve 1 has converged to a point. Since we cannot construct a fat-line from
|
// Clip P with the fat-line for Q
|
||||||
// a point, we dismiss this clipping so we can continue clipping curve 2.
|
var v1Clip = Curve.getPart(v1, tMinClip, tMaxClip),
|
||||||
addCurveIntersections(v2, v1, c2, c1, locations, param,
|
tDiff = tMaxClip - tMinClip;
|
||||||
uMin, uMax, tMin, tMax, tDiff, !reverse, recursion);
|
if (oldTDiff > 0.5 && tDiff > 0.5) {
|
||||||
|
// Subdivide the curve which has converged the least.
|
||||||
|
if (tMaxNew - tMinNew > uMax - uMin) {
|
||||||
|
var parts = Curve.subdivide(v1Clip, 0.5),
|
||||||
|
t = (tMinNew + tMaxNew) / 2;
|
||||||
|
addCurveIntersections(
|
||||||
|
v2, parts[0], c2, c1, locations, param,
|
||||||
|
uMin, uMax, tMinNew, t, tDiff, !reverse, recursion);
|
||||||
|
addCurveIntersections(
|
||||||
|
v2, parts[1], c2, c1, locations, param,
|
||||||
|
uMin, uMax, t, tMaxNew, tDiff, !reverse, recursion);
|
||||||
|
} else {
|
||||||
|
var parts = Curve.subdivide(v2, 0.5),
|
||||||
|
u = (uMin + uMax) / 2;
|
||||||
|
addCurveIntersections(
|
||||||
|
parts[0], v1Clip, c2, c1, locations, param,
|
||||||
|
uMin, u, tMinNew, tMaxNew, tDiff, !reverse, recursion);
|
||||||
|
addCurveIntersections(
|
||||||
|
parts[1], v1Clip, c2, c1, locations, param,
|
||||||
|
u, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
|
||||||
|
}
|
||||||
|
} else if (tDiff > 0) { // Iterate
|
||||||
|
addCurveIntersections(v2, v1Clip, c2, c1, locations, param,
|
||||||
|
uMin, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
|
||||||
|
} else {
|
||||||
|
// P has converged to a point. Since we cannot construct a fat-
|
||||||
|
// line from a point, we dismiss this clipping so we can
|
||||||
|
// continue with clipping Q.
|
||||||
|
addCurveIntersections(v2, v1, c2, c1, locations, param,
|
||||||
|
uMin, uMax, tMin, tMax, tDiff, !reverse, recursion);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue