Simplify and clean-up PathItem._splitPath() code.

This commit is contained in:
Jürg Lehni 2014-02-20 01:56:49 +01:00
parent 4e5644f264
commit d730b75073

View file

@ -289,7 +289,8 @@ var PathItem = Item.extend(/** @lends PathItem# */{
/*#*/ } // !__options.nativeContains /*#*/ } // !__options.nativeContains
}, },
statics: { // Mess with indentation in order to get more line-space below...
statics: {
/** /**
* Private method for splitting a PathItem at the given intersections. * Private method for splitting a PathItem at the given intersections.
* The routine works for both self intersections and intersections * The routine works for both self intersections and intersections
@ -297,60 +298,51 @@ var PathItem = Item.extend(/** @lends PathItem# */{
* @param {CurveLocation[]} intersections Array of CurveLocation objects * @param {CurveLocation[]} intersections Array of CurveLocation objects
*/ */
_splitPath: function(intersections) { _splitPath: function(intersections) {
var loc, i, j, node1, node2, t, segment, var linearSegments;
path1, isLinear, crv, crvNew,
newSegments = [], function resetLinear() {
tolerance = /*#=*/ Numerical.EPSILON;
for (i = intersections.length - 1; i >= 0; i--) {
node1 = intersections[i];
path1 = node1.getPath();
// Check if we are splitting same curve multiple times
if (node2 && node2.getPath() === path1 &&
node2._curve === node1._curve) {
// Use the result of last split and interpolate the parameter.
crv = crvNew;
t = node1._parameter / node2._parameter;
} else {
crv = node1._curve;
t = node1._parameter;
isLinear = crv.isLinear();
newSegments.length = 0;
}
// Split the curve at t, while ignoring linearity of curves
if (!(crvNew = crv.divide(t, true, true))) {
if (t >= 1-tolerance) {
segment = crv._segment2;
} else if (t <= tolerance) {
segment = crv._segment1;
} else {
// Determine the closest segment by comparing curve lengths
segment = crv.getPartLength(0, t) < crv.getPartLength(t, 1)
? crv._segment1 : crv._segment2;
}
crvNew = crv;
} else {
segment = crvNew.getSegment1();
crvNew = crvNew.getPrevious();
}
// Link the new segment with the intersection on the other curve
segment._intersection = node1.getIntersection();
node1._segment = segment;
node2 = node1;
// Reset linear segments if they were part of a linear curve // Reset linear segments if they were part of a linear curve
// and if we are done with the entire curve. // and if we are done with the entire curve.
newSegments.push(segment); for (var i = 0, l = linearSegments.length - 1; i <= l; i++) {
loc = intersections[i - 1]; var segment = linearSegments[i];
if (!(loc && loc.getPath() === path1 && loc._curve === node1._curve) if (i > 0)
&& isLinear) {
for (j = newSegments.length-1; j >= 0; j--) {
segment = newSegments[j];
// FIXME: Don't reset the appropriate handle if the
// intersections were on t == 0 && t == 1
segment._handleOut.set(0, 0);
segment._handleIn.set(0, 0); segment._handleIn.set(0, 0);
} if (i < l)
segment._handleOut.set(0, 0);
} }
} }
for (var i = intersections.length - 1, curve, prevLoc; i >= 0; i--) {
var loc = intersections[i],
t = loc._parameter;
// Check if we are splitting same curve multiple times
if (prevLoc && prevLoc._curve === loc._curve) {
// Scale parameter after previous split.
t /= prevLoc._parameter;
} else {
if (linearSegments)
resetLinear();
curve = loc._curve;
linearSegments = curve.isLinear() && [];
}
var newCurve,
segment;
// Split the curve at t, while ignoring linearity of curves
if (newCurve = curve.divide(t, true, true)) {
segment = newCurve._segment1;
curve = newCurve.getPrevious();
} else {
segment = t < 0.5 ? curve._segment1 : curve._segment2;
}
// Link the new segment with the intersection on the other curve
segment._intersection = loc.getIntersection();
loc._segment = segment;
if (linearSegments)
linearSegments.push(segment);
prevLoc = loc;
}
if (linearSegments)
resetLinear();
}, },
/** /**
@ -641,7 +633,7 @@ var PathItem = Item.extend(/** @lends PathItem# */{
} }
return locations; return locations;
}, },
} }
/** /**
* Smooth bezier curves without changing the amount of segments or their * Smooth bezier curves without changing the amount of segments or their