mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-22 07:19:57 -05:00
Expose the previously private evalutate() function through Curve.evaluate(), make it work with curve value arrays, and use it the for various evaluation methods (#getPoint/Tangent/Normal).
This commit is contained in:
parent
14816a872e
commit
cb3834f41c
1 changed files with 262 additions and 251 deletions
|
@ -260,6 +260,43 @@ var Curve = this.Curve = Base.extend({
|
|||
return Curve.getParameter.apply(Curve, args);
|
||||
},
|
||||
|
||||
_evaluate: function(parameter, type) {
|
||||
var args = this.getCurveValues();
|
||||
args.push(parameter, type);
|
||||
return Curve.evaluate.apply(Curve, args);
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns the point on the curve at the specified position.
|
||||
*
|
||||
* @param {Number} parameter the position at which to find the point as
|
||||
* a value between {@code 0} and {@code 1}.
|
||||
* @return {Point}
|
||||
*/
|
||||
getPoint: function(parameter) {
|
||||
return this._evaluate(parameter, 0);
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns the tangent point on the curve at the specified position.
|
||||
*
|
||||
* @param {Number} parameter the position at which to find the tangent
|
||||
* point as a value between {@code 0} and {@code 1}.
|
||||
*/
|
||||
getTangent: function(parameter) {
|
||||
return this._evaluate(parameter, 1);
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns the normal point on the curve at the specified position.
|
||||
*
|
||||
* @param {Number} parameter the position at which to find the normal
|
||||
* point as a value between {@code 0} and {@code 1}.
|
||||
*/
|
||||
getNormal: function(parameter) {
|
||||
return this._evaluate(parameter, 2);
|
||||
},
|
||||
|
||||
// TODO: getParameter(point, precision)
|
||||
// TODO: getLocation
|
||||
// TODO: getIntersections
|
||||
|
@ -320,76 +357,179 @@ var Curve = this.Curve = Base.extend({
|
|||
curve._segment1 = segment1;
|
||||
curve._segment2 = segment2;
|
||||
return curve;
|
||||
},
|
||||
|
||||
getCurveValues: function(segment1, segment2) {
|
||||
var p1 = segment1._point,
|
||||
h1 = segment1._handleOut,
|
||||
h2 = segment2._handleIn,
|
||||
p2 = segment2._point;
|
||||
return [
|
||||
p1._x, p1._y,
|
||||
p1._x + h1._x, p1._y + h1._y,
|
||||
p2._x + h2._x, p2._y + h2._y,
|
||||
p2._x, p2._y
|
||||
];
|
||||
},
|
||||
|
||||
evaluate: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t, type) {
|
||||
var x, y;
|
||||
|
||||
// Handle special case at beginning / end of curve
|
||||
// PORT: Change in Sg too, so 0.000000000001 won't be
|
||||
// required anymore
|
||||
if (t == 0 || t == 1) {
|
||||
var point;
|
||||
switch (type) {
|
||||
case 0: // point
|
||||
x = t == 0 ? p1x : p2x;
|
||||
y = t == 0 ? p1y : p2y;
|
||||
break;
|
||||
case 1: // tangent
|
||||
case 2: // normal
|
||||
var px, py;
|
||||
if (t == 0) {
|
||||
if (c1x == p1x && c1y == p1y) { // handle1 = 0
|
||||
if (c2x == p2x && c2y == p2y) { // handle2 = 0
|
||||
px = p2x; py = p2y; // p2
|
||||
} else {
|
||||
px = c2x; py = c2y; // c2
|
||||
}
|
||||
} else {
|
||||
px = c1x; py = c1y; // handle1
|
||||
}
|
||||
x = px - p1x;
|
||||
y = py - p1y;
|
||||
} else {
|
||||
if (c2x == p2x && c2y == p2y) { // handle2 = 0
|
||||
if (c1x == p1x && c1y == p1y) { // handle1 = 0
|
||||
px = p1x; py = p1y; // p1
|
||||
} else {
|
||||
px = c1x; py = c1y; // c1
|
||||
}
|
||||
} else { // handle2
|
||||
px = c2x; py = c2y;
|
||||
}
|
||||
x = px - p2x;
|
||||
y = py - p2y;
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// Calculate the polynomial coefficients.
|
||||
var cx = 3 * (c1x - p1x),
|
||||
bx = 3 * (c2x - c1x) - cx,
|
||||
ax = p2x - p1x - cx - bx,
|
||||
|
||||
cy = 3 * (c1y - p1y),
|
||||
by = 3 * (c2y - c1y) - cy,
|
||||
ay = p2y - p1y - cy - by;
|
||||
|
||||
switch (type) {
|
||||
case 0: // point
|
||||
// Calculate the curve point at parameter value t
|
||||
x = ((ax * t + bx) * t + cx) * t + p1x;
|
||||
y = ((ay * t + by) * t + cy) * t + p1y;
|
||||
break;
|
||||
case 1: // tangent
|
||||
case 2: // normal
|
||||
// Simply use the derivation of the bezier function for both
|
||||
// the x and y coordinates:
|
||||
x = (3 * ax * t + 2 * bx) * t + cx;
|
||||
y = (3 * ay * t + 2 * by) * t + cy;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// The normal is simply the rotated tangent:
|
||||
// TODO: Rotate normals the other way in Scriptographer too?
|
||||
// (Depending on orientation, I guess?)
|
||||
return type == 2 ? new Point(y, -x) : new Point(x, y);
|
||||
},
|
||||
|
||||
subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
|
||||
if (t === undefined)
|
||||
t = 0.5;
|
||||
var u = 1 - t,
|
||||
// Interpolate from 4 to 3 points
|
||||
p3x = u * p1x + t * c1x,
|
||||
p3y = u * p1y + t * c1y,
|
||||
p4x = u * c1x + t * c2x,
|
||||
p4y = u * c1y + t * c2y,
|
||||
p5x = u * c2x + t * p2x,
|
||||
p5y = u * c2y + t * p2y,
|
||||
// Interpolate from 3 to 2 points
|
||||
p6x = u * p3x + t * p4x,
|
||||
p6y = u * p3y + t * p4y,
|
||||
p7x = u * p4x + t * p5x,
|
||||
p7y = u * p4y + t * p5y,
|
||||
// Interpolate from 2 points to 1 point
|
||||
p8x = u * p6x + t * p7x,
|
||||
p8y = u * p6y + t * p7y;
|
||||
// We now have all the values we need to build the subcurves:
|
||||
return [
|
||||
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
|
||||
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
|
||||
];
|
||||
},
|
||||
|
||||
// TODO: Find better name
|
||||
getPart: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, from, to) {
|
||||
var curve = [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y];
|
||||
if (from > 0) {
|
||||
// 8th argument of Curve.subdivide() == t, and values can be
|
||||
// directly used as arguments list for apply().
|
||||
curve[8] = from;
|
||||
curve = Curve.subdivide.apply(Curve, curve)[1]; // right
|
||||
}
|
||||
if (to < 1) {
|
||||
// Se above about curve[8].
|
||||
// Interpolate the parameter at 'to' in the new curve and
|
||||
// cut there
|
||||
curve[8] = (to - from) / (1 - from);
|
||||
curve = Curve.subdivide.apply(Curve, curve)[0]; // left
|
||||
}
|
||||
return curve;
|
||||
},
|
||||
|
||||
isSufficientlyFlat: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) {
|
||||
// Inspired by Skia, but to be tested:
|
||||
// Calculate 1/3 (m1) and 2/3 (m2) along the line between start (p1)
|
||||
// and end (p2), measure distance from there the control points and
|
||||
// see if they are further away than 1/2.
|
||||
// Seems all very inaccurate, especially since the distance
|
||||
// measurement is just the bigger one of x / y...
|
||||
// TODO: Find a more accurate and still fast way to determine this.
|
||||
var vx = (p2x - p1x) / 3,
|
||||
vy = (p2y - p1y) / 3,
|
||||
m1x = p1x + vx,
|
||||
m1y = p1y + vy,
|
||||
m2x = p2x - vx,
|
||||
m2y = p2y - vy;
|
||||
return Math.max(
|
||||
Math.abs(m1x - c1x), Math.abs(m1y - c1y),
|
||||
Math.abs(m2x - c1x), Math.abs(m1y - c1y)) < 1 / 2;
|
||||
/*
|
||||
// Thanks to Kaspar Fischer for the following:
|
||||
// http://www.inf.ethz.ch/personal/fischerk/pubs/bez.pdf
|
||||
var ux = 3 * c1x - 2 * p1x - p2x;
|
||||
ux *= ux;
|
||||
var uy = 3 * c1y - 2 * p1y - p2y;
|
||||
uy *= uy;
|
||||
var vx = 3 * c2x - 2 * p2x - p1x;
|
||||
vx *= vx;
|
||||
var vy = 3 * c2y - 2 * p2y - p1y;
|
||||
vy *= vy;
|
||||
if (ux < vx)
|
||||
ux = vx;
|
||||
if (uy < vy)
|
||||
uy = vy;
|
||||
// Tolerance is 16 * tol ^ 2
|
||||
return ux + uy <= 16 * Numerical.TOLERNACE * Numerical.TOLERNACE;
|
||||
*/
|
||||
}
|
||||
}
|
||||
}, new function() {
|
||||
|
||||
function evaluate(that, t, type) {
|
||||
// Calculate the polynomial coefficients. caution: handles are relative
|
||||
// to points
|
||||
var point1 = that._segment1._point,
|
||||
handle1 = that._segment1._handleOut,
|
||||
handle2 = that._segment2._handleIn,
|
||||
point2 = that._segment2._point,
|
||||
x, y;
|
||||
|
||||
// Handle special case at beginning / end of curve
|
||||
// PORT: Change in Sg too, so 0.000000000001 won't be
|
||||
// required anymore
|
||||
if (t == 0 || t == 1) {
|
||||
var point;
|
||||
switch (type) {
|
||||
case 0: // point
|
||||
point = t == 0 ? point1 : point2;
|
||||
break;
|
||||
case 1: // tangent
|
||||
case 2: // normal
|
||||
point = t == 0
|
||||
? handle1.isZero()
|
||||
? handle2.isZero()
|
||||
? point2.subtract(point1)
|
||||
: point2.add(handle2).subtract(point1)
|
||||
: handle1
|
||||
: handle2.isZero() // t == 1
|
||||
? handle1.isZero()
|
||||
? point1.subtract(point2)
|
||||
: point1.add(handle1).subtract(point2)
|
||||
: handle2;
|
||||
break;
|
||||
}
|
||||
x = point._x;
|
||||
y = point._y;
|
||||
} else {
|
||||
var dx = point2._x - point1._x,
|
||||
cx = 3 * handle1._x,
|
||||
bx = 3 * (dx + handle2._x - handle1._x) - cx,
|
||||
ax = dx - cx - bx,
|
||||
|
||||
dy = point2._y - point1._y,
|
||||
cy = 3 * handle1._y,
|
||||
by = 3 * (dy + handle2._y - handle1._y) - cy,
|
||||
ay = dy - cy - by;
|
||||
|
||||
switch (type) {
|
||||
case 0: // point
|
||||
x = ((ax * t + bx) * t + cx) * t + point1._x;
|
||||
y = ((ay * t + by) * t + cy) * t + point1._y;
|
||||
break;
|
||||
case 1: // tangent
|
||||
case 2: // normal
|
||||
// Simply use the derivation of the bezier function for both
|
||||
// the x and y coordinates:
|
||||
x = (3 * ax * t + 2 * bx) * t + cx;
|
||||
y = (3 * ay * t + 2 * by) * t + cy;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// The normal is simply the rotated tangent:
|
||||
// TODO: Rotate normals the other way in Scriptographer too?
|
||||
// (Depending on orientation, I guess?)
|
||||
return type == 2 ? new Point(y, -x) : new Point(x, y);
|
||||
}
|
||||
|
||||
function getLengthIntegrand(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) {
|
||||
// Calculate the coefficients of a Bezier derivative.
|
||||
var ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
|
||||
|
@ -417,193 +557,64 @@ var Curve = this.Curve = Base.extend({
|
|||
}
|
||||
|
||||
return {
|
||||
/** @lends Curve# */
|
||||
statics: true,
|
||||
|
||||
/**
|
||||
* Returns the point on the curve at the specified position.
|
||||
*
|
||||
* @param {Number} parameter the position at which to find the point as
|
||||
* a value between {@code 0} and {@code 1}.
|
||||
* @return {Point}
|
||||
*/
|
||||
getPoint: function(parameter) {
|
||||
return evaluate(this, parameter, 0);
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns the tangent point on the curve at the specified position.
|
||||
*
|
||||
* @param {Number} parameter the position at which to find the tangent
|
||||
* point as a value between {@code 0} and {@code 1}.
|
||||
*/
|
||||
getTangent: function(parameter) {
|
||||
return evaluate(this, parameter, 1);
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns the normal point on the curve at the specified position.
|
||||
*
|
||||
* @param {Number} parameter the position at which to find the normal
|
||||
* point as a value between {@code 0} and {@code 1}.
|
||||
*/
|
||||
getNormal: function(parameter) {
|
||||
return evaluate(this, parameter, 2);
|
||||
},
|
||||
|
||||
statics: {
|
||||
getCurveValues: function(segment1, segment2) {
|
||||
var p1 = segment1._point,
|
||||
h1 = segment1._handleOut,
|
||||
h2 = segment2._handleIn,
|
||||
p2 = segment2._point;
|
||||
return [
|
||||
p1._x, p1._y,
|
||||
p1._x + h1._x, p1._y + h1._y,
|
||||
p2._x + h2._x, p2._y + h2._y,
|
||||
p2._x, p2._y
|
||||
];
|
||||
},
|
||||
|
||||
getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, a, b) {
|
||||
if (a === undefined)
|
||||
a = 0;
|
||||
if (b === undefined)
|
||||
b = 1;
|
||||
if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) {
|
||||
// Straight line
|
||||
var dx = p2x - p1x,
|
||||
dy = p2y - p1y;
|
||||
return (b - a) * Math.sqrt(dx * dx + dy * dy);
|
||||
}
|
||||
var ds = getLengthIntegrand(
|
||||
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y);
|
||||
return Numerical.integrate(ds, a, b, getIterations(a, b));
|
||||
},
|
||||
|
||||
getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y,
|
||||
length, start) {
|
||||
if (length == 0)
|
||||
return start;
|
||||
// See if we're going forward or backward, and handle cases
|
||||
// differently
|
||||
var forward = length > 0,
|
||||
a = forward ? start : 0,
|
||||
b = forward ? 1 : start,
|
||||
length = Math.abs(length),
|
||||
// Use integrand to calculate both range length and part
|
||||
// lengths in f(t) below.
|
||||
ds = getLengthIntegrand(
|
||||
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y),
|
||||
// Get length of total range
|
||||
rangeLength = Numerical.integrate(ds, a, b,
|
||||
getIterations(a, b));
|
||||
if (length >= rangeLength)
|
||||
return forward ? b : a;
|
||||
// Use length / rangeLength for an initial guess for t, to
|
||||
// bring us closer:
|
||||
var guess = length / rangeLength,
|
||||
len = 0;
|
||||
// Iteratively calculate curve range lengths, and add them up,
|
||||
// using integration precision depending on the size of the
|
||||
// range. This is much faster and also more precise than not
|
||||
// modifing start and calculating total length each time.
|
||||
function f(t) {
|
||||
var count = getIterations(start, t);
|
||||
if (start < t) {
|
||||
len += Numerical.integrate(ds, start, t, count);
|
||||
} else {
|
||||
len -= Numerical.integrate(ds, t, start, count);
|
||||
}
|
||||
start = t;
|
||||
return len - length;
|
||||
}
|
||||
return Numerical.findRoot(f, ds,
|
||||
forward ? a + guess : b - guess, // Initial guess for x
|
||||
a, b, 16, Numerical.TOLERANCE);
|
||||
},
|
||||
|
||||
subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
|
||||
if (t === undefined)
|
||||
t = 0.5;
|
||||
var u = 1 - t,
|
||||
// Interpolate from 4 to 3 points
|
||||
p3x = u * p1x + t * c1x,
|
||||
p3y = u * p1y + t * c1y,
|
||||
p4x = u * c1x + t * c2x,
|
||||
p4y = u * c1y + t * c2y,
|
||||
p5x = u * c2x + t * p2x,
|
||||
p5y = u * c2y + t * p2y,
|
||||
// Interpolate from 3 to 2 points
|
||||
p6x = u * p3x + t * p4x,
|
||||
p6y = u * p3y + t * p4y,
|
||||
p7x = u * p4x + t * p5x,
|
||||
p7y = u * p4y + t * p5y,
|
||||
// Interpolate from 2 points to 1 point
|
||||
p8x = u * p6x + t * p7x,
|
||||
p8y = u * p6y + t * p7y;
|
||||
// We now have all the values we need to build the subcurves:
|
||||
return [
|
||||
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
|
||||
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
|
||||
];
|
||||
},
|
||||
|
||||
// TODO: Find better name
|
||||
getPart: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, from, to) {
|
||||
var curve = [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y];
|
||||
if (from > 0) {
|
||||
// 8th argument of Curve.subdivide() == t, and values can be
|
||||
// directly used as arguments list for apply().
|
||||
curve[8] = from;
|
||||
curve = Curve.subdivide.apply(Curve, curve)[1]; // right
|
||||
}
|
||||
if (to < 1) {
|
||||
// Se above about curve[8].
|
||||
// Interpolate the parameter at 'to' in the new curve and
|
||||
// cut there
|
||||
curve[8] = (to - from) / (1 - from);
|
||||
curve = Curve.subdivide.apply(Curve, curve)[0]; // left
|
||||
}
|
||||
return curve;
|
||||
},
|
||||
|
||||
isSufficientlyFlat: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) {
|
||||
// Inspired by Skia, but to be tested:
|
||||
// Calculate 1/3 (m1) and 2/3 (m2) along the line between start
|
||||
// (p1) and end (p2), measure distance from there the control
|
||||
// points and see if they are further away than 1/2.
|
||||
// Seems all very inaccurate, especially since the distance
|
||||
// measurement is just the bigger one of x / y...
|
||||
// TODO: Find a more accurate and still fast way to determine
|
||||
// this.
|
||||
var vx = (p2x - p1x) / 3,
|
||||
vy = (p2y - p1y) / 3,
|
||||
m1x = p1x + vx,
|
||||
m1y = p1y + vy,
|
||||
m2x = p2x - vx,
|
||||
m2y = p2y - vy;
|
||||
return Math.max(
|
||||
Math.abs(m1x - c1x), Math.abs(m1y - c1y),
|
||||
Math.abs(m2x - c1x), Math.abs(m1y - c1y)) < 1 / 2;
|
||||
/*
|
||||
// Thanks to Kaspar Fischer for the following:
|
||||
// http://www.inf.ethz.ch/personal/fischerk/pubs/bez.pdf
|
||||
var ux = 3 * c1x - 2 * p1x - p2x;
|
||||
ux *= ux;
|
||||
var uy = 3 * c1y - 2 * p1y - p2y;
|
||||
uy *= uy;
|
||||
var vx = 3 * c2x - 2 * p2x - p1x;
|
||||
vx *= vx;
|
||||
var vy = 3 * c2y - 2 * p2y - p1y;
|
||||
vy *= vy;
|
||||
if (ux < vx)
|
||||
ux = vx;
|
||||
if (uy < vy)
|
||||
uy = vy;
|
||||
// Tolerance is 16 * tol ^ 2
|
||||
return ux + uy <= 16 * Numerical.TOLERNACE * Numerical.TOLERNACE;
|
||||
*/
|
||||
getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, a, b) {
|
||||
if (a === undefined)
|
||||
a = 0;
|
||||
if (b === undefined)
|
||||
b = 1;
|
||||
if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) {
|
||||
// Straight line
|
||||
var dx = p2x - p1x,
|
||||
dy = p2y - p1y;
|
||||
return (b - a) * Math.sqrt(dx * dx + dy * dy);
|
||||
}
|
||||
var ds = getLengthIntegrand(
|
||||
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y);
|
||||
return Numerical.integrate(ds, a, b, getIterations(a, b));
|
||||
},
|
||||
|
||||
getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y,
|
||||
length, start) {
|
||||
if (length == 0)
|
||||
return start;
|
||||
// See if we're going forward or backward, and handle cases
|
||||
// differently
|
||||
var forward = length > 0,
|
||||
a = forward ? start : 0,
|
||||
b = forward ? 1 : start,
|
||||
length = Math.abs(length),
|
||||
// Use integrand to calculate both range length and part
|
||||
// lengths in f(t) below.
|
||||
ds = getLengthIntegrand(
|
||||
p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y),
|
||||
// Get length of total range
|
||||
rangeLength = Numerical.integrate(ds, a, b,
|
||||
getIterations(a, b));
|
||||
if (length >= rangeLength)
|
||||
return forward ? b : a;
|
||||
// Use length / rangeLength for an initial guess for t, to
|
||||
// bring us closer:
|
||||
var guess = length / rangeLength,
|
||||
len = 0;
|
||||
// Iteratively calculate curve range lengths, and add them up,
|
||||
// using integration precision depending on the size of the
|
||||
// range. This is much faster and also more precise than not
|
||||
// modifing start and calculating total length each time.
|
||||
function f(t) {
|
||||
var count = getIterations(start, t);
|
||||
if (start < t) {
|
||||
len += Numerical.integrate(ds, start, t, count);
|
||||
} else {
|
||||
len -= Numerical.integrate(ds, t, start, count);
|
||||
}
|
||||
start = t;
|
||||
return len - length;
|
||||
}
|
||||
return Numerical.findRoot(f, ds,
|
||||
forward ? a + guess : b - guess, // Initial guess for x
|
||||
a, b, 16, Numerical.TOLERANCE);
|
||||
}
|
||||
};
|
||||
});
|
||||
|
|
Loading…
Reference in a new issue