Restructure code a bit for easier reading.

This commit is contained in:
Jürg Lehni 2011-11-24 15:18:57 +01:00
parent ea87be166e
commit c989d3ee3f

View file

@ -1761,6 +1761,107 @@ var Path = this.Path = PathItem.extend(/** @lends Path# */{
} }
}; };
}, new function() { // A dedicated scope for the tricky bounds calculations }, new function() { // A dedicated scope for the tricky bounds calculations
/**
* Returns the bounding rectangle of the item excluding stroke width.
*/
function getBounds(that, matrix, strokePadding) {
// Code ported and further optimised from:
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
var segments = that._segments,
first = segments[0];
if (!first)
return null;
var coords = new Array(6),
prevCoords = new Array(6);
// Make coordinates for first segment available in prevCoords.
first._transformCoordinates(matrix, prevCoords, false);
var min = prevCoords.slice(0, 2),
max = min.slice(0), // clone
// Add some tolerance for good roots, as t = 0 / 1 are added
// seperately anyhow, and we don't want joins to be added with
// radiuses in getStrokeBounds()
tMin = Numerical.TOLERANCE,
tMax = 1 - tMin;
function processSegment(segment) {
segment._transformCoordinates(matrix, coords, false);
for (var i = 0; i < 2; i++) {
var v0 = prevCoords[i], // prev.point
v1 = prevCoords[i + 4], // prev.handleOut
v2 = coords[i + 2], // segment.handleIn
v3 = coords[i]; // segment.point
function add(value, t) {
var padding = 0;
if (value == null) {
// Calculate bezier polynomial at t
var u = 1 - t;
value = u * u * u * v0
+ 3 * u * u * t * v1
+ 3 * u * t * t * v2
+ t * t * t * v3;
// Only add strokeWidth to bounds for points which lie
// within 0 < t < 1. The corner cases for cap and join
// are handled in getStrokeBounds()
padding = strokePadding ? strokePadding[i] : 0;
}
var left = value - padding,
right = value + padding;
if (left < min[i])
min[i] = left;
if (right > max[i])
max[i] = right;
}
add(v3, null);
// Calculate derivative of our bezier polynomial, divided by 3.
// Dividing by 3 allows for simpler calculations of a, b, c and
// leads to the same quadratic roots below.
var a = 3 * (v1 - v2) - v0 + v3,
b = 2 * (v0 + v2) - 4 * v1,
c = v1 - v0;
// Solve for derivative for quadratic roots. Each good root
// (meaning a solution 0 < t < 1) is an extrema in the cubic
// polynomial and thus a potential point defining the bounds
// TODO: Use tolerance here, just like Numerical.solveQuadratic
if (a == 0) {
if (b == 0)
continue;
var t = -c / b;
// Test for good root and add to bounds if good (same below)
if (tMin < t && t < tMax)
add(null, t);
continue;
}
var q = b * b - 4 * a * c;
if (q < 0)
continue;
// TODO: Match this with Numerical.solveQuadratic
var sqrt = Math.sqrt(q),
f = -0.5 / a,
t1 = (b - sqrt) * f,
t2 = (b + sqrt) * f;
if (tMin < t1 && t1 < tMax)
add(null, t1);
if (tMin < t2 && t2 < tMax)
add(null, t2);
}
// Swap coordinate buffers
var tmp = prevCoords;
prevCoords = coords;
coords = tmp;
}
for (var i = 1, l = segments.length; i < l; i++)
processSegment(segments[i]);
if (that._closed)
processSegment(first);
return Rectangle.create(min[0], min[1],
max[0] - min[0], max[1] - min[1]);
}
/** /**
* Returns the horizontal and vertical padding that a transformed round * Returns the horizontal and vertical padding that a transformed round
* stroke adds to the bounding box, by calculating the dimensions of a * stroke adds to the bounding box, by calculating the dimensions of a
@ -1803,256 +1904,160 @@ var Path = this.Path = PathItem.extend(/** @lends Path# */{
return [Math.abs(x), Math.abs(y)]; return [Math.abs(x), Math.abs(y)];
} }
var get = { /**
/** * Returns the bounding rectangle of the item including stroke width.
* Returns the bounding rectangle of the item excluding stroke width. */
*/ function getStrokeBounds(that, matrix) {
bounds: function(that, matrix, strokePadding) { // TODO: Should we access this.getStrokeColor, as we do in _transform?
// Code ported and further optimised from: // TODO: Find a way to reuse 'bounds' cache instead?
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html if (!that._style._strokeColor || !that._style._strokeWidth)
var segments = that._segments, return getBounds(that, matrix);
first = segments[0]; var width = that.getStrokeWidth(),
if (!first) radius = width / 2,
return null; padding = getPenPadding(radius, matrix),
var coords = new Array(6), join = that.getStrokeJoin(),
prevCoords = new Array(6); cap = that.getStrokeCap(),
// Make coordinates for first segment available in prevCoords. // miter is relative to width. Divide it by 2 since we're
first._transformCoordinates(matrix, prevCoords, false); // measuring half the distance below
var min = prevCoords.slice(0, 2), miter = that.getMiterLimit() * width / 2,
max = min.slice(0), // clone segments = that._segments,
// Add some tolerance for good roots, as t = 0 / 1 are added length = segments.length,
// seperately anyhow, and we don't want joins to be added with // It seems to be compatible with Ai we need to pass pen padding
// radiuses in getStrokeBounds() // untransformed to getBounds
tMin = Numerical.TOLERANCE, bounds = getBounds(that, matrix, getPenPadding(radius));
tMax = 1 - tMin; // Create a rectangle of padding size, used for union with bounds
function processSegment(segment) { // further down
segment._transformCoordinates(matrix, coords, false); var joinBounds = new Rectangle(new Size(padding).multiply(2));
for (var i = 0; i < 2; i++) { function add(point) {
var v0 = prevCoords[i], // prev.point bounds = bounds.include(matrix
v1 = prevCoords[i + 4], // prev.handleOut ? matrix.transform(point) : point);
v2 = coords[i + 2], // segment.handleIn }
v3 = coords[i]; // segment.point
function add(value, t) { function addBevelJoin(curve, t) {
var padding = 0; var point = curve.getPoint(t),
if (value == null) { normal = curve.getNormal(t).normalize(radius);
// Calculate bezier polynomial at t add(point.add(normal));
var u = 1 - t; add(point.subtract(normal));
value = u * u * u * v0 }
+ 3 * u * u * t * v1
+ 3 * u * t * t * v2
+ t * t * t * v3;
// Only add strokeWidth to bounds for points which lie
// within 0 < t < 1. The corner cases for cap and join
// are handled in getStrokeBounds()
padding = strokePadding ? strokePadding[i] : 0;
}
var left = value - padding,
right = value + padding;
if (left < min[i])
min[i] = left;
if (right > max[i])
max[i] = right;
} function addJoin(segment, join) {
add(v3, null); // When both handles are set in a segment, the join setting is
// ignored and round is always used.
// Calculate derivative of our bezier polynomial, divided by 3. if (join === 'round' || !segment._handleIn.isZero()
// Dividing by 3 allows for simpler calculations of a, b, c and && !segment._handleOut.isZero()) {
// leads to the same quadratic roots below. bounds = bounds.unite(joinBounds.setCenter(matrix
var a = 3 * (v1 - v2) - v0 + v3, ? matrix.transform(segment._point) : segment._point));
b = 2 * (v0 + v2) - 4 * v1, } else if (join == 'bevel') {
c = v1 - v0; var curve = segment.getCurve();
addBevelJoin(curve, 0);
// Solve for derivative for quadratic roots. Each good root addBevelJoin(curve.getPrevious(), 1);
// (meaning a solution 0 < t < 1) is an extrema in the cubic } else if (join == 'miter') {
// polynomial and thus a potential point defining the bounds var curve2 = segment.getCurve(),
// TODO: Use tolerance here, just like Numerical.solveQuadratic curve1 = curve2.getPrevious(),
if (a == 0) { point = curve2.getPoint(0),
if (b == 0) normal1 = curve1.getNormal(1).normalize(radius),
continue; normal2 = curve2.getNormal(0).normalize(radius),
var t = -c / b; // Intersect the two lines
// Test for good root and add to bounds if good (same below) line1 = new Line(point.subtract(normal1),
if (tMin < t && t < tMax) new Point(-normal1.y, normal1.x)),
add(null, t); line2 = new Line(point.subtract(normal2),
continue; new Point(-normal2.y, normal2.x)),
} corner = line1.intersect(line2);
// Now measure the distance from the segment to the
var q = b * b - 4 * a * c; // intersection, which his half of the miter distance
if (q < 0) if (!corner || point.getDistance(corner) > miter) {
continue; addJoin(segment, 'bevel');
// TODO: Match this with Numerical.solveQuadratic } else {
var sqrt = Math.sqrt(q), add(corner);
f = -0.5 / a,
t1 = (b - sqrt) * f,
t2 = (b + sqrt) * f;
if (tMin < t1 && t1 < tMax)
add(null, t1);
if (tMin < t2 && t2 < tMax)
add(null, t2);
} }
// Swap coordinate buffers
var tmp = prevCoords;
prevCoords = coords;
coords = tmp;
} }
for (var i = 1, l = segments.length; i < l; i++) }
processSegment(segments[i]);
if (that._closed)
processSegment(first);
return Rectangle.create(min[0], min[1],
max[0] - min[0], max[1] - min[1]);
},
/** function addCap(segment, cap, t) {
* Returns the bounding rectangle of the item including stroke width. switch (cap) {
*/ case 'round':
strokeBounds: function(that, matrix) { return addJoin(segment, cap);
// TODO: Should we access this.getStrokeColor, as we do in _transform? case 'butt':
// TODO: Find a way to reuse 'bounds' cache instead? case 'square':
if (!that._style._strokeColor || !that._style._strokeWidth) // Calculate the corner points of butt and square caps
return get.bounds(that, matrix); var curve = segment.getCurve(),
var width = that.getStrokeWidth(), point = curve.getPoint(t),
radius = width / 2,
padding = getPenPadding(radius, matrix),
join = that.getStrokeJoin(),
cap = that.getStrokeCap(),
// miter is relative to width. Divide it by 2 since we're
// measuring half the distance below
miter = that.getMiterLimit() * width / 2,
segments = that._segments,
length = segments.length,
// It seems to be compatible with Ai we need to pass pen padding
// untransformed to get.bounds
bounds = get.bounds(that, matrix, getPenPadding(radius));
// Create a rectangle of padding size, used for union with bounds
// further down
var joinBounds = new Rectangle(new Size(padding).multiply(2));
function add(point) {
bounds = bounds.include(matrix
? matrix.transform(point) : point);
}
function addBevelJoin(curve, t) {
var point = curve.getPoint(t),
normal = curve.getNormal(t).normalize(radius); normal = curve.getNormal(t).normalize(radius);
// For square caps, we need to step away from point in the
// direction of the tangent, which is the rotated normal
if (cap === 'square')
point = point.add(normal.y, -normal.x);
add(point.add(normal)); add(point.add(normal));
add(point.subtract(normal)); add(point.subtract(normal));
break;
} }
function addJoin(segment, join) {
// When both handles are set in a segment, the join setting is
// ignored and round is always used.
if (join === 'round' || !segment._handleIn.isZero()
&& !segment._handleOut.isZero()) {
bounds = bounds.unite(joinBounds.setCenter(matrix
? matrix.transform(segment._point) : segment._point));
} else if (join == 'bevel') {
var curve = segment.getCurve();
addBevelJoin(curve, 0);
addBevelJoin(curve.getPrevious(), 1);
} else if (join == 'miter') {
var curve2 = segment.getCurve(),
curve1 = curve2.getPrevious(),
point = curve2.getPoint(0),
normal1 = curve1.getNormal(1).normalize(radius),
normal2 = curve2.getNormal(0).normalize(radius),
// Intersect the two lines
line1 = new Line(point.subtract(normal1),
new Point(-normal1.y, normal1.x)),
line2 = new Line(point.subtract(normal2),
new Point(-normal2.y, normal2.x)),
corner = line1.intersect(line2);
// Now measure the distance from the segment to the
// intersection, which his half of the miter distance
if (!corner || point.getDistance(corner) > miter) {
addJoin(segment, 'bevel');
} else {
add(corner);
}
}
}
function addCap(segment, cap, t) {
switch (cap) {
case 'round':
return addJoin(segment, cap);
case 'butt':
case 'square':
// Calculate the corner points of butt and square caps
var curve = segment.getCurve(),
point = curve.getPoint(t),
normal = curve.getNormal(t).normalize(radius);
// For square caps, we need to step away from point in the
// direction of the tangent, which is the rotated normal
if (cap === 'square')
point = point.add(normal.y, -normal.x);
add(point.add(normal));
add(point.subtract(normal));
break;
}
}
for (var i = 1, l = length - (that._closed ? 0 : 1); i < l; i++) {
addJoin(segments[i], join);
}
if (that._closed) {
addJoin(segments[0], join);
} else {
addCap(segments[0], cap, 0);
addCap(segments[length - 1], cap, 1);
}
return bounds;
},
/**
* Returns the bounding rectangle of the item including handles.
*/
handleBounds: function(that, matrix, stroke, join) {
var coords = new Array(6),
x1 = Infinity,
x2 = -x1,
y1 = x1,
y2 = x2;
stroke = stroke / 2 || 0; // Stroke padding
join = join / 2 || 0; // Join padding, for miterLimit
for (var i = 0, l = that._segments.length; i < l; i++) {
var segment = that._segments[i];
segment._transformCoordinates(matrix, coords, false);
for (var j = 0; j < 6; j += 2) {
// Use different padding for points or handles
var padding = j == 0 ? join : stroke,
x = coords[j],
y = coords[j + 1],
xn = x - padding,
xx = x + padding,
yn = y - padding,
yx = y + padding;
if (xn < x1) x1 = xn;
if (xx > x2) x2 = xx;
if (yn < y1) y1 = yn;
if (yx > y2) y2 = yx;
}
}
return Rectangle.create(x1, y1, x2 - x1, y2 - y1);
},
/**
* Returns the rough bounding rectangle of the item that is shure to
* include all of the drawing, including stroke width.
*/
roughBounds: function(that, matrix) {
// Delegate to handleBounds, but pass on radius values for stroke
// and joins. Hanlde miter joins specially, by passing the largets
// radius possible.
var width = that.getStrokeWidth();
return get.handleBounds(that, matrix, width,
that.getStrokeJoin() == 'miter'
? width * that.getMiterLimit()
: width);
} }
for (var i = 1, l = length - (that._closed ? 0 : 1); i < l; i++) {
addJoin(segments[i], join);
}
if (that._closed) {
addJoin(segments[0], join);
} else {
addCap(segments[0], cap, 0);
addCap(segments[length - 1], cap, 1);
}
return bounds;
}
/**
* Returns the bounding rectangle of the item including handles.
*/
function getHandleBounds(that, matrix, stroke, join) {
var coords = new Array(6),
x1 = Infinity,
x2 = -x1,
y1 = x1,
y2 = x2;
stroke = stroke / 2 || 0; // Stroke padding
join = join / 2 || 0; // Join padding, for miterLimit
for (var i = 0, l = that._segments.length; i < l; i++) {
var segment = that._segments[i];
segment._transformCoordinates(matrix, coords, false);
for (var j = 0; j < 6; j += 2) {
// Use different padding for points or handles
var padding = j == 0 ? join : stroke,
x = coords[j],
y = coords[j + 1],
xn = x - padding,
xx = x + padding,
yn = y - padding,
yx = y + padding;
if (xn < x1) x1 = xn;
if (xx > x2) x2 = xx;
if (yn < y1) y1 = yn;
if (yx > y2) y2 = yx;
}
}
return Rectangle.create(x1, y1, x2 - x1, y2 - y1);
}
/**
* Returns the rough bounding rectangle of the item that is shure to include
* all of the drawing, including stroke width.
*/
function getRoughBounds(that, matrix) {
// Delegate to handleBounds, but pass on radius values for stroke and
// joins. Hanlde miter joins specially, by passing the largets radius
// possible.
var width = that.getStrokeWidth();
return getHandleBounds(that, matrix, width,
that.getStrokeJoin() == 'miter'
? width * that.getMiterLimit()
: width);
}
var get = {
bounds: getBounds,
strokeBounds: getStrokeBounds,
handleBounds: getHandleBounds,
roughBounds: getRoughBounds
}; };
return { return {