mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-22 07:19:57 -05:00
Clean-up Numerical code.
This commit is contained in:
parent
448d8d9b99
commit
b5b75dfce4
1 changed files with 11 additions and 15 deletions
|
@ -127,21 +127,19 @@ var Numerical = new function() {
|
|||
* a*x^2 + b*x + c = 0
|
||||
*/
|
||||
solveQuadratic: function(a, b, c, roots, min, max) {
|
||||
var unbound = min === undefined,
|
||||
var epsilon = Numerical.EPSILON,
|
||||
unbound = min === undefined,
|
||||
minE = min - epsilon,
|
||||
maxE = max + epsilon,
|
||||
count = 0;
|
||||
|
||||
function add(root) {
|
||||
if (unbound || root >= minE && root <= maxE){
|
||||
root = root < min ? min : (root > max ? max : root);
|
||||
roots[count++] = root;
|
||||
}
|
||||
if (unbound || root > minE && root < maxE)
|
||||
roots[count++] = root < min ? min : root > max ? max : root;
|
||||
return count;
|
||||
}
|
||||
|
||||
// Code ported over and adapted from Uintah library (MIT license).
|
||||
var epsilon = this.EPSILON,
|
||||
minE = unbound ? undefined : min - epsilon,
|
||||
maxE = unbound ? undefined : max + epsilon;
|
||||
// If a is 0, equation is actually linear, return 0 or 1 easy roots.
|
||||
if (abs(a) < epsilon) {
|
||||
if (abs(b) >= epsilon)
|
||||
|
@ -169,21 +167,19 @@ var Numerical = new function() {
|
|||
* a*x^3 + b*x^2 + c*x + d = 0
|
||||
*/
|
||||
solveCubic: function(a, b, c, d, roots, min, max) {
|
||||
var epsilon = this.EPSILON;
|
||||
var epsilon = Numerical.EPSILON;
|
||||
// If a is 0, equation is actually quadratic.
|
||||
if (abs(a) < epsilon)
|
||||
return Numerical.solveQuadratic(b, c, d, roots, min, max);
|
||||
|
||||
var unbound = min === undefined,
|
||||
minE = unbound ? undefined : min - epsilon,
|
||||
maxE = unbound ? undefined : max + epsilon,
|
||||
minE = min - epsilon,
|
||||
maxE = max + epsilon,
|
||||
count = 0;
|
||||
|
||||
function add(root) {
|
||||
if (unbound || root >= minE && root <= maxE){
|
||||
root = root < min ? min : (root > max ? max : root);
|
||||
roots[count++] = root;
|
||||
}
|
||||
if (unbound || root > minE && root < maxE)
|
||||
roots[count++] = root < min ? min : root > max ? max : root;
|
||||
return count;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue