Change implementation of PathItem#flatten(flatness)

- flatness parameter specifies maximum allowed error instead of maximum allowed distance between point
- Parts that are already flat are not further flattened
- Corners are preserved

Closes #618
This commit is contained in:
Jürg Lehni 2016-02-10 14:58:40 +01:00
parent ed4347714b
commit 9e8fcee8cd
5 changed files with 108 additions and 91 deletions

View file

@ -730,7 +730,15 @@ statics: {
: v;
},
isFlatEnough: function(v, tolerance) {
/**
* Determines if a curve is sufficiently flat, meaning it appears as a
* straight line and has curve-time that is enough linear, as specified by
* the given `flatness` parameter.
*
* @param {Number} flatness the maximum error allowed for the straight line
* to deviate from the curve
*/
isFlatEnough: function(v, flatness) {
// Thanks to Kaspar Fischer and Roger Willcocks for the following:
// http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
var p1x = v[0], p1y = v[1],
@ -742,7 +750,7 @@ statics: {
vx = 3 * c2x - 2 * p2x - p1x,
vy = 3 * c2y - 2 * p2y - p1y;
return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy)
< 10 * tolerance * tolerance;
<= 16 * flatness * flatness;
},
getArea: function(v) {

View file

@ -1202,42 +1202,6 @@ var Path = PathItem.extend(/** @lends Path# */{
return this;
},
reverse: function() {
this._segments.reverse();
// Reverse the handles:
for (var i = 0, l = this._segments.length; i < l; i++) {
var segment = this._segments[i];
var handleIn = segment._handleIn;
segment._handleIn = segment._handleOut;
segment._handleOut = handleIn;
segment._index = i;
}
// Clear curves since it all has changed.
this._curves = null;
// Flip clockwise state if it's defined
if (this._clockwise !== undefined)
this._clockwise = !this._clockwise;
this._changed(/*#=*/Change.GEOMETRY);
},
flatten: function(maxDistance) {
var iterator = new PathIterator(this, 64, 0.1),
pos = 0,
// Adapt step = maxDistance so the points distribute evenly.
step = iterator.length / Math.ceil(iterator.length / maxDistance),
// Add/remove half of step to end, so imprecisions are ok too.
// For closed paths, remove it, because we don't want to add last
// segment again
end = iterator.length + (this._closed ? -step : step) / 2;
// Iterate over path and evaluate and add points at given offsets
var segments = [];
while (pos <= end) {
segments.push(new Segment(iterator.getPointAt(pos)));
pos += step;
}
this.setSegments(segments);
},
/**
* Reduces the path by removing curves that have a length of 0,
* and unnecessary segments between two collinear flat curves.
@ -1261,6 +1225,38 @@ var Path = PathItem.extend(/** @lends Path# */{
return this;
},
// NOTE: Documentation is in PathItem#reverse()
reverse: function() {
this._segments.reverse();
// Reverse the handles:
for (var i = 0, l = this._segments.length; i < l; i++) {
var segment = this._segments[i];
var handleIn = segment._handleIn;
segment._handleIn = segment._handleOut;
segment._handleOut = handleIn;
segment._index = i;
}
// Clear curves since it all has changed.
this._curves = null;
// Flip clockwise state if it's defined
if (this._clockwise !== undefined)
this._clockwise = !this._clockwise;
this._changed(/*#=*/Change.GEOMETRY);
},
// NOTE: Documentation is in PathItem#flatten()
flatten: function(flatness) {
// Use PathIterator to subdivide the curves into parts that are flat
// enough, as specified by `flatness` / Curve.isFlatEnough():
var iterator = new PathIterator(this, flatness || 0.25, 256, true),
parts = iterator.parts,
segments = [];
for (var i = 0, l = parts.length; i < l; i++) {
segments.push(new Segment(parts[i].curve.slice(0, 2)));
}
this.setSegments(segments);
},
// NOTE: Documentation is in PathItem#simplify()
simplify: function(tolerance) {
var segments = new PathFitter(this).fit(tolerance || 2.5);
@ -2183,7 +2179,7 @@ new function() { // Scope for drawing
// Use PathIterator to draw dashed paths:
if (!dontStart)
ctx.beginPath();
var iterator = new PathIterator(this, 32, 0.25,
var iterator = new PathIterator(this, 0.25, 32, false,
strokeMatrix),
length = iterator.length,
from = -style.getDashOffset(), to,

View file

@ -388,14 +388,14 @@ var PathItem = Item.extend(/** @lends PathItem# */{
*/
/**
* Converts the curves in a path to straight lines with an even distribution
* of points. The distance between the produced segments is as close as
* possible to the value specified by the `maxDistance` parameter.
* Flattens the curves in path items to a sequence of straight lines, by
* subdividing them enough times until the specified maximum error is met.
*
* @name PathItem#flatten
* @function
*
* @param {Number} maxDistance the maximum distance between the points
* @param {Number} flatness the maximum error between the flattened lines
* and the original curves
*
* @example {@paperscript}
* // Flattening a circle shaped path:
@ -414,8 +414,8 @@ var PathItem = Item.extend(/** @lends PathItem# */{
* var copy = path.clone();
* copy.position.x += 150;
*
* // Convert its curves to points, with a max distance of 20:
* copy.flatten(20);
* // Convert its curves to points, with a maximum error of 10:
* copy.flatten(10);
*/
// TODO: Write about negative indices, and add an example for ranges.

View file

@ -19,26 +19,34 @@ var PathIterator = Base.extend({
_class: 'PathIterator',
/**
* Creates a path iterator for the given path.
* Creates a path iterator for the given path. The iterator converts curves
* into a sequence of straight lines by the use of curve-subdivision with an
* allowed maximum error to create a lookup table that maps curve-time to
* path offsets, and can be used for efficient iteration over the full
* length of the path, and getting points / tangents / normals and curvature
* in path offset space.
*
* @param {Path} path the path to iterate over
* @param {Path} path the path to create the iterator for
* @param {Number} [flatness=0.25] the maximum error allowed for the
* straight lines to deviate from the original curves
* @param {Number} [maxRecursion=32] the maximum amount of recursion in
* curve subdivision when mapping offsets to curve parameters
* @param {Number} [tolerance=0.25] the error tolerance at which the
* recursion is interrupted before the maximum number of iterations is
* reached
* curve subdivision when mapping offsets to curve parameters
* @param {Boolean} [ignoreStraight=false] if only interested in the result
* of the sub-division (e.g. for path flattening), passing `true` will
* protect straight curves from being subdivided for curve-time
* translation
* @param {Matrix} [matrix] the matrix by which to transform the path's
* coordinates without modifying the actual path.
* coordinates without modifying the actual path.
* @return {PathIterator} the newly created path iterator
*/
initialize: function(path, maxRecursion, tolerance, matrix) {
initialize: function(path, flatness, maxRecursion, ignoreStraight, matrix) {
// Instead of relying on path.curves, we only use segments here and
// get the curve values from them.
var curves = [], // The curve values as returned by getValues()
parts = [], // The calculated, subdivided parts of the path
length = 0, // The total length of the path
// By default, we're not subdividing more than 32 times.
minDifference = 1 / (maxRecursion || 32),
minSpan = 1 / (maxRecursion || 32),
segments = path._segments,
segment1 = segments[0],
segment2;
@ -51,29 +59,31 @@ var PathIterator = Base.extend({
computeParts(curve, segment1._index, 0, 1);
}
function computeParts(curve, index, minT, maxT) {
function computeParts(curve, index, t1, t2) {
// Check if the t-span is big enough for subdivision.
if ((maxT - minT) > minDifference
// After quite a bit of testing, a default tolerance of 0.25
if ((t2 - t1) > minSpan
&& !(ignoreStraight && Curve.isStraight(curve))
// After quite a bit of testing, a default flatness of 0.25
// appears to offer a good trade-off between speed and
// precision for display purposes.
&& !Curve.isFlatEnough(curve, tolerance || 0.25)) {
var split = Curve.subdivide(curve, 0.5),
halfT = (minT + maxT) / 2;
&& !Curve.isFlatEnough(curve, flatness || 0.25)) {
var halves = Curve.subdivide(curve, 0.5),
tMid = (t1 + t2) / 2;
// Recursively subdivide and compute parts again.
computeParts(split[0], index, minT, halfT);
computeParts(split[1], index, halfT, maxT);
computeParts(halves[0], index, t1, tMid);
computeParts(halves[1], index, tMid, t2);
} else {
// Calculate distance between p1 and p2
var x = curve[6] - curve[0],
y = curve[7] - curve[1],
dist = Math.sqrt(x * x + y * y);
if (dist > /*#=*/Numerical.TOLERANCE) {
// Calculate the length of the curve interpreted as a line.
var dx = curve[6] - curve[0],
dy = curve[7] - curve[1],
dist = Math.sqrt(dx * dx + dy * dy);
if (dist > 0) {
length += dist;
parts.push({
offset: length,
value: maxT,
index: index
curve: curve,
index: index,
time: t2,
});
}
}
@ -86,16 +96,15 @@ var PathIterator = Base.extend({
}
if (path._closed)
addCurve(segment2, segments[0]);
this.curves = curves;
this.parts = parts;
this.length = length;
// Keep a current index from the part where we last where in
// getTimeAt(), to optimise for iterator-like usage of iterator.
// _get(), to optimise for iterator-like usage of iterator.
this.index = 0;
},
getTimeAt: function(offset) {
_get: function(offset) {
// Make sure we're not beyond the requested offset already. Search the
// start position backwards from where to then process the loop below.
var i, j = this.index;
@ -116,41 +125,41 @@ var PathIterator = Base.extend({
var prev = this.parts[i - 1];
// Make sure we only use the previous parameter value if its
// for the same curve, by checking index. Use 0 otherwise.
var prevVal = prev && prev.index == part.index ? prev.value : 0,
prevLen = prev ? prev.offset : 0;
var prevTime = prev && prev.index === part.index ? prev.time : 0,
prevOffset = prev ? prev.offset : 0;
return {
index: part.index,
// Interpolate
value: prevVal + (part.value - prevVal)
* (offset - prevLen) / (part.offset - prevLen),
index: part.index
time: prevTime + (part.time - prevTime)
* (offset - prevOffset) / (part.offset - prevOffset)
};
}
}
// Return last one
// If we're still here, return last one
var part = this.parts[this.parts.length - 1];
return {
value: 1,
index: part.index
index: part.index,
time: 1
};
},
drawPart: function(ctx, from, to) {
from = this.getTimeAt(from);
to = this.getTimeAt(to);
for (var i = from.index; i <= to.index; i++) {
var start = this._get(from),
end = this._get(to);
for (var i = start.index, l = end.index; i <= l; i++) {
var curve = Curve.getPart(this.curves[i],
i == from.index ? from.value : 0,
i == to.index ? to.value : 1);
if (i == from.index)
i === start.index ? start.time : 0,
i === end.index ? end.time : 1);
if (i === start.index)
ctx.moveTo(curve[0], curve[1]);
ctx.bezierCurveTo.apply(ctx, curve.slice(2));
}
}
}, Base.each(Curve._evaluateMethods,
function(name) {
this[name + 'At'] = function(offset, weighted) {
var param = this.getTimeAt(offset);
return Curve[name](this.curves[param.index], param.value, weighted);
this[name + 'At'] = function(offset) {
var param = this._get(offset);
return Curve[name](this.curves[param.index], param.time);
};
}, {})
);

View file

@ -370,8 +370,12 @@ test('path.curves on closed paths', function() {
test('path.flatten(maxDistance)', function() {
var path = new Path.Circle(new Size(80, 50), 35);
// Convert its curves to points, with a max distance of 20:
path.flatten(20);
// Convert its curves to points, with a flatness of 5:
path.flatten(5);
equals(function() {
return path.segments.length;
}, 8, 'Using a flatness of 10, we should end up with 8 segments.');
equals(function() {
return path.lastSegment.point.equals(path.firstSegment.point);