mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-20 22:39:50 -05:00
Add foundations for Path#strokeBounds support.
This commit is contained in:
parent
620cb2c754
commit
91ec37de9c
1 changed files with 89 additions and 78 deletions
167
src/path/Path.js
167
src/path/Path.js
|
@ -31,84 +31,6 @@ Path = PathItem.extend({
|
||||||
// path, with the added benefit that b can be < a, and closed looping is
|
// path, with the added benefit that b can be < a, and closed looping is
|
||||||
// taken into account.
|
// taken into account.
|
||||||
|
|
||||||
/**
|
|
||||||
* The bounding rectangle of the item excluding stroke width.
|
|
||||||
*/
|
|
||||||
getBounds: function() {
|
|
||||||
// Code ported and further optimised from:
|
|
||||||
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
|
|
||||||
var segments = this._segments, first = segments[0], prev = first;
|
|
||||||
if (!first)
|
|
||||||
return null;
|
|
||||||
var min = first.point.clone(), max = min.clone();
|
|
||||||
var coords = ['x', 'y'];
|
|
||||||
function processSegment(segment) {
|
|
||||||
for (var i = 0; i < 2; i++) {
|
|
||||||
var coord = coords[i];
|
|
||||||
|
|
||||||
var v0 = prev.point[coord],
|
|
||||||
v1 = v0 + prev.handleOut[coord],
|
|
||||||
v3 = segment.point[coord],
|
|
||||||
v2 = v3 + segment.handleIn[coord];
|
|
||||||
|
|
||||||
function add(value, t) {
|
|
||||||
if (value == null) {
|
|
||||||
// Calculate bezier polynomial at t
|
|
||||||
var u = 1 - t;
|
|
||||||
value = u * u * u * v0
|
|
||||||
+ 3 * u * u * t * v1
|
|
||||||
+ 3 * u * t * t * v2
|
|
||||||
+ t * t * t * v3;
|
|
||||||
}
|
|
||||||
if (value < min[coord]) {
|
|
||||||
min[coord] = value;
|
|
||||||
} else if (value > max[coord]) {
|
|
||||||
max[coord] = value;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
add(v3);
|
|
||||||
|
|
||||||
// Calculate derivative of our bezier polynomial, divided by 3.
|
|
||||||
// Dividing by 3 allows for simpler calculations of a, b, c and
|
|
||||||
// leads to the same quadratic roots below.
|
|
||||||
var a = 3 * (v1 - v2) - v0 + v3;
|
|
||||||
var b = 2 * (v0 + v2) - 4 * v1;
|
|
||||||
var c = v1 - v0;
|
|
||||||
|
|
||||||
// Solve for derivative for quadratic roots. Each good root
|
|
||||||
// (meaning a solution 0 < t < 1) is an extrema in the cubic
|
|
||||||
// polynomial and thus a potential point defining the bounds
|
|
||||||
if (a == 0) {
|
|
||||||
if (b == 0)
|
|
||||||
continue;
|
|
||||||
var t = -c / b;
|
|
||||||
// Test for good root and add to bounds if good (same below)
|
|
||||||
if (0 < t && t < 1)
|
|
||||||
add(null, t);
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
var b2ac = b * b - 4 * a * c;
|
|
||||||
if (b2ac < 0)
|
|
||||||
continue;
|
|
||||||
var sqrt = Math.sqrt(b2ac),
|
|
||||||
f = 1 / (a * -2),
|
|
||||||
t1 = (b - sqrt) * f,
|
|
||||||
t2 = (b + sqrt) * f;
|
|
||||||
if (0 < t1 && t1 < 1)
|
|
||||||
add(null, t1);
|
|
||||||
if (0 < t2 && t2 < 1)
|
|
||||||
add(null, t2);
|
|
||||||
}
|
|
||||||
prev = segment;
|
|
||||||
}
|
|
||||||
for (var i = 1, l = segments.length; i < l; i++)
|
|
||||||
processSegment(segments[i]);
|
|
||||||
if (this.closed)
|
|
||||||
processSegment(first);
|
|
||||||
return new Rectangle(min.x, min.y, max.x - min.x , max.y - min.y);
|
|
||||||
},
|
|
||||||
|
|
||||||
// Calculates arclength of a cubic using adaptive simpson integration.
|
// Calculates arclength of a cubic using adaptive simpson integration.
|
||||||
getCurveLength: function(goal) {
|
getCurveLength: function(goal) {
|
||||||
var seg0 = this._segments[0], seg1 = this._segments[1];
|
var seg0 = this._segments[0], seg1 = this._segments[1];
|
||||||
|
@ -468,6 +390,82 @@ Path = PathItem.extend({
|
||||||
|
|
||||||
}
|
}
|
||||||
}, new function() { // Inject methods that require scoped privates
|
}, new function() { // Inject methods that require scoped privates
|
||||||
|
|
||||||
|
function calculateBounds(that, includeStroke) {
|
||||||
|
// Code ported and further optimised from:
|
||||||
|
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
|
||||||
|
var segments = that._segments, first = segments[0], prev = first;
|
||||||
|
if (!first)
|
||||||
|
return null;
|
||||||
|
var min = first.point.clone(), max = min.clone();
|
||||||
|
var coords = ['x', 'y'];
|
||||||
|
function processSegment(segment) {
|
||||||
|
for (var i = 0; i < 2; i++) {
|
||||||
|
var coord = coords[i];
|
||||||
|
|
||||||
|
var v0 = prev.point[coord],
|
||||||
|
v1 = v0 + prev.handleOut[coord],
|
||||||
|
v3 = segment.point[coord],
|
||||||
|
v2 = v3 + segment.handleIn[coord];
|
||||||
|
|
||||||
|
function add(value, t) {
|
||||||
|
if (value == null) {
|
||||||
|
// Calculate bezier polynomial at t
|
||||||
|
var u = 1 - t;
|
||||||
|
value = u * u * u * v0
|
||||||
|
+ 3 * u * u * t * v1
|
||||||
|
+ 3 * u * t * t * v2
|
||||||
|
+ t * t * t * v3;
|
||||||
|
}
|
||||||
|
if (value < min[coord]) {
|
||||||
|
min[coord] = value;
|
||||||
|
} else if (value > max[coord]) {
|
||||||
|
max[coord] = value;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
add(v3);
|
||||||
|
|
||||||
|
// Calculate derivative of our bezier polynomial, divided by 3.
|
||||||
|
// Dividing by 3 allows for simpler calculations of a, b, c and
|
||||||
|
// leads to the same quadratic roots below.
|
||||||
|
var a = 3 * (v1 - v2) - v0 + v3;
|
||||||
|
var b = 2 * (v0 + v2) - 4 * v1;
|
||||||
|
var c = v1 - v0;
|
||||||
|
|
||||||
|
// Solve for derivative for quadratic roots. Each good root
|
||||||
|
// (meaning a solution 0 < t < 1) is an extrema in the cubic
|
||||||
|
// polynomial and thus a potential point defining the bounds
|
||||||
|
if (a == 0) {
|
||||||
|
if (b == 0)
|
||||||
|
continue;
|
||||||
|
var t = -c / b;
|
||||||
|
// Test for good root and add to bounds if good (same below)
|
||||||
|
if (0 < t && t < 1)
|
||||||
|
add(null, t);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
var b2ac = b * b - 4 * a * c;
|
||||||
|
if (b2ac < 0)
|
||||||
|
continue;
|
||||||
|
var sqrt = Math.sqrt(b2ac),
|
||||||
|
f = 1 / (a * -2),
|
||||||
|
t1 = (b - sqrt) * f,
|
||||||
|
t2 = (b + sqrt) * f;
|
||||||
|
if (0 < t1 && t1 < 1)
|
||||||
|
add(null, t1);
|
||||||
|
if (0 < t2 && t2 < 1)
|
||||||
|
add(null, t2);
|
||||||
|
}
|
||||||
|
prev = segment;
|
||||||
|
}
|
||||||
|
for (var i = 1, l = segments.length; i < l; i++)
|
||||||
|
processSegment(segments[i]);
|
||||||
|
if (that.closed)
|
||||||
|
processSegment(first);
|
||||||
|
return new Rectangle(min.x, min.y, max.x - min.x , max.y - min.y);
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Solves a tri-diagonal system for one of coordinates (x or y) of first
|
* Solves a tri-diagonal system for one of coordinates (x or y) of first
|
||||||
* bezier control points.
|
* bezier control points.
|
||||||
|
@ -502,6 +500,19 @@ Path = PathItem.extend({
|
||||||
};
|
};
|
||||||
|
|
||||||
return {
|
return {
|
||||||
|
beans: true,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The bounding rectangle of the item excluding stroke width.
|
||||||
|
*/
|
||||||
|
getBounds: function() {
|
||||||
|
return calculateBounds(this, false);
|
||||||
|
},
|
||||||
|
|
||||||
|
getStrokeBounds: function() {
|
||||||
|
return calculateBounds(this, true);
|
||||||
|
},
|
||||||
|
|
||||||
smooth: function() {
|
smooth: function() {
|
||||||
var segments = this._segments;
|
var segments = this._segments;
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue