Always use fat-line clipping since fallback doesn't behave the same way.

This commit is contained in:
Jürg Lehni 2015-08-21 16:39:41 +02:00
parent caf6321caf
commit 716d21e369
2 changed files with 0 additions and 31 deletions

View file

@ -25,7 +25,6 @@ var __options = {
environment: 'browser',
parser: 'acorn',
svg: true,
fatlineClipping: true,
booleanOperations: true,
nativeContains: false,
paperScript: true

View file

@ -1193,7 +1193,6 @@ new function() { // Scope for methods that require private functions
function addCurveIntersections(v1, v2, curve1, curve2, locations, include,
tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion) {
/*#*/ if (__options.fatlineClipping) {
// Avoid deeper recursion.
// NOTE: @iconexperience determined that more than 20 recursions are
// needed sometimes, depending on the tDiff threshold values further
@ -1288,36 +1287,8 @@ new function() { // Scope for methods that require private functions
addCurveIntersections(v2, v1, curve2, curve1, locations, include,
uMin, uMax, tMinNew, tMaxNew, tDiff, !reverse, ++recursion);
}
/*#*/ } else { // !__options.fatlineClipping
// Subdivision method
var bounds1 = Curve.getBounds(v1),
bounds2 = Curve.getBounds(v2),
tolerance = /*#=*/Numerical.TOLERANCE;
if (bounds1.touches(bounds2)) {
// See if both curves are flat enough to be treated as lines, either
// because they have no control points at all, or are "flat enough"
// If the curve was flat in a previous iteration, we don't need to
// recalculate since it does not need further subdivision then.
if ((Curve.isLinear(v1) || Curve.isFlatEnough(v1, tolerance))
&& (Curve.isLinear(v2) || Curve.isFlatEnough(v2, tolerance))) {
// See if the parametric equations of the lines interesct.
addLineIntersection(v1, v2, curve1, curve2, locations, include);
} else {
// Subdivide both curves, and see if they intersect.
// If one of the curves is flat already, no further subdivion
// is required.
var v1s = Curve.subdivide(v1),
v2s = Curve.subdivide(v2);
for (var i = 0; i < 2; i++)
for (var j = 0; j < 2; j++)
addCurveIntersections(v1s[i], v2s[j], curve1, curve2,
locations, include);
}
}
/*#*/ } // !__options.fatlineClipping
}
/*#*/ if (__options.fatlineClipping) {
/**
* Calculate the convex hull for the non-parametric bezier curve D(ti, di(t))
* The ti is equally spaced across [0..1] [0, 1/3, 2/3, 1] for
@ -1419,7 +1390,6 @@ new function() { // Scope for methods that require private functions
// All points of hull are above / below the threshold
return null;
}
/*#*/ } // __options.fatlineClipping
/**
* Intersections between curve and line becomes rather simple here mostly