mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-03 19:45:44 -05:00
Simplify and streamline Path._getMonotoneCurves() code.
This commit is contained in:
parent
f6061905be
commit
6af639946b
1 changed files with 68 additions and 72 deletions
140
src/path/Path.js
140
src/path/Path.js
|
@ -1716,98 +1716,94 @@ var Path = PathItem.extend(/** @lends Path# */{
|
|||
*/
|
||||
_getMonotoneCurves: function() {
|
||||
var monoCurves = this._monotoneCurves,
|
||||
lastCurve,
|
||||
INCREASING = 1,
|
||||
DECREASING = -1,
|
||||
HORIZONTAL = 0;
|
||||
if (!monoCurves) {
|
||||
// Insert curve values into a cached array
|
||||
// Always avoid horizontal curves
|
||||
function insertValues(v, dir) {
|
||||
var y0 = v[1], y1 = v[7];
|
||||
dir = dir || INCREASING;
|
||||
if (y0 === y1) {
|
||||
dir = HORIZONTAL;
|
||||
} else if (y0 > y1) {
|
||||
dir = DECREASING;
|
||||
}
|
||||
// Add a reference to subsequent curves
|
||||
v.push(dir);
|
||||
if (lastCurve) {
|
||||
v[9] = lastCurve;
|
||||
lastCurve[10] = v;
|
||||
}
|
||||
lastCurve = v;
|
||||
monoCurves.push(v);
|
||||
prevCurve;
|
||||
|
||||
// Insert curve values into a cached array
|
||||
function insertCurve(v) {
|
||||
var y0 = v[1],
|
||||
y1 = v[7];
|
||||
// Add the winding direction to the end of the curve values.
|
||||
v[8] = y0 === y1
|
||||
? 0 // Horizontal
|
||||
: y0 > y1
|
||||
? -1 // Decreasing
|
||||
: 1; // Increasing
|
||||
// Add a reference to neighboring curves
|
||||
if (prevCurve) {
|
||||
v[9] = prevCurve;
|
||||
prevCurve[10] = v;
|
||||
}
|
||||
// Handle bezier curves. We need to chop them into smaller curves
|
||||
// with defined orientation, by solving the derivative curve for
|
||||
// Y extrema.
|
||||
function insertCurves(v, dir) {
|
||||
var y0 = v[1], y1 = v[3],
|
||||
y2 = v[5], y3 = v[7],
|
||||
roots = [], tolerance = /*#=*/ Numerical.TOLERANCE,
|
||||
i, li;
|
||||
monoCurves.push(v);
|
||||
prevCurve = v;
|
||||
}
|
||||
|
||||
// Handle bezier curves. We need to chop them into smaller curves
|
||||
// with defined orientation, by solving the derivative curve for
|
||||
// Y extrema.
|
||||
function handleCurve(v) {
|
||||
// Filter out curves of zero length.
|
||||
// TODO: Do not filter this here.
|
||||
if (Curve.getLength(v) === 0)
|
||||
return;
|
||||
var y0 = v[1],
|
||||
y1 = v[3],
|
||||
y2 = v[5],
|
||||
y3 = v[7];
|
||||
if (Curve.isLinear(v)) {
|
||||
// Handling linear curves is easy.
|
||||
insertCurve(v);
|
||||
} else {
|
||||
// Split the curve at y extrema, to get bezier curves with clear
|
||||
// orientation: Calculate the derivative and find its roots.
|
||||
var a = 3 * (y1 - y2) - y0 + y3,
|
||||
b = 2 * (y0 + y2) - 4 * y1,
|
||||
c = y1 - y0;
|
||||
// Keep then range to 0 .. 1 (excluding) in the search
|
||||
// for y extrema
|
||||
c = y1 - y0,
|
||||
tolerance = /*#=*/ Numerical.TOLERANCE,
|
||||
roots = [];
|
||||
// Keep then range to 0 .. 1 (excluding) in the search for y
|
||||
// extrema.
|
||||
var count = Numerical.solveQuadratic(a, b, c, roots, tolerance,
|
||||
1 - tolerance);
|
||||
if (count === 0) {
|
||||
insertValues(v, dir);
|
||||
insertCurve(v);
|
||||
} else {
|
||||
roots.sort();
|
||||
var parts, t = roots[0];
|
||||
parts = Curve.subdivide(v, t);
|
||||
var t = roots[0],
|
||||
parts = Curve.subdivide(v, t);
|
||||
insertCurve(parts[0]);
|
||||
if (count > 1) {
|
||||
// Now renormalize t1 to the range of the next part.
|
||||
// If there are two extremas, renormalize t to the range
|
||||
// of the second range and split again.
|
||||
t = (roots[1] - t) / (1 - t);
|
||||
var subparts = Curve.subdivide(parts[1], t);
|
||||
parts.splice(1, 1, subparts[0], subparts[1]);
|
||||
// Since we already processed parts[0], we can override
|
||||
// the parts array with the new pair now.
|
||||
parts = Curve.subdivide(parts[1], t);
|
||||
insertCurve(parts[0]);
|
||||
}
|
||||
for (i = 0, li = parts.length; i < li; i++)
|
||||
insertValues(parts[i]);
|
||||
insertCurve(parts[1]);
|
||||
}
|
||||
}
|
||||
// Insert curves that are monotonic in y direction into a cached array
|
||||
}
|
||||
|
||||
if (!monoCurves) {
|
||||
// Insert curves that are monotonic in y direction into cached array
|
||||
monoCurves = this._monotoneCurves = [];
|
||||
var curves = this.getCurves(),
|
||||
crv, vals, i, li,
|
||||
segments = this._segments;
|
||||
// If the path is not closed, we should join the end points
|
||||
// with a straight line, just like how filling open paths works.
|
||||
for (var i = 0, l = curves.length; i < l; i++)
|
||||
handleCurve(curves[i].getValues());
|
||||
// If the path is not closed, we need to join the end points with a
|
||||
// straight line, just like how filling open paths works.
|
||||
if (!this._closed && segments.length > 1) {
|
||||
curves.push(new Curve(segments[segments.length - 1]._point,
|
||||
segments[0]._point));
|
||||
var p1 = segments[segments.length - 1]._point,
|
||||
p2 = segments[0]._point,
|
||||
p1x = p1._x, p1y = p1._y,
|
||||
p2x = p2._x, p2y = p2._y;
|
||||
handleCurve([p1x, p1y, p1x, p1y, p2x, p2y, p2x, p2y]);
|
||||
}
|
||||
for (i = 0, li = curves.length; i < li; i++) {
|
||||
crv = curves[i];
|
||||
// Filter out curves of zero length
|
||||
vals = crv.getValues();
|
||||
if (Curve.getLength(vals) === 0)
|
||||
continue;
|
||||
// Handle linear and cubic curves seperately
|
||||
if (crv.isLinear()) {
|
||||
insertValues(vals);
|
||||
} else {
|
||||
var y0 = vals[1], y1 = vals[7];
|
||||
if (y0 > y1) {
|
||||
insertCurves(vals, DECREASING);
|
||||
} else if (y0 == y1 && y0 == vals[3] && y0 == vals[5]) {
|
||||
insertValues(vals, HORIZONTAL);
|
||||
} else {
|
||||
insertCurves(vals, INCREASING);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Link, first and last curves
|
||||
lastCurve = monoCurves[monoCurves.length - 1];
|
||||
monoCurves[0][9] = lastCurve;
|
||||
lastCurve.push(monoCurves[0]);
|
||||
// Link first and last curves
|
||||
monoCurves[0][9] = prevCurve = monoCurves[monoCurves.length - 1];
|
||||
prevCurve[10] = monoCurves[0];
|
||||
}
|
||||
return monoCurves;
|
||||
},
|
||||
|
|
Loading…
Reference in a new issue