mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-03 19:45:44 -05:00
Clean up code.
This commit is contained in:
parent
10e1417dc2
commit
68eb14c00d
1 changed files with 37 additions and 37 deletions
|
@ -45,14 +45,14 @@ var PathFitter = Base.extend({
|
|||
},
|
||||
|
||||
// Fit a Bezier curve to a (sub)set of digitized points
|
||||
fitCubic: function(first, last, tHat1, tHat2) {
|
||||
fitCubic: function(first, last, tan1, tan2) {
|
||||
// Use heuristic if region only has two points in it
|
||||
if (last - first == 1) {
|
||||
var pt1 = this.points[first],
|
||||
pt2 = this.points[last],
|
||||
dist = pt1.getDistance(pt2) / 3;
|
||||
this.addCurve([pt1, pt1.add(tHat1.normalize(dist)),
|
||||
pt2.add(tHat2.normalize(dist)), pt2]);
|
||||
this.addCurve([pt1, pt1.add(tan1.normalize(dist)),
|
||||
pt2.add(tan2.normalize(dist)), pt2]);
|
||||
return;
|
||||
}
|
||||
// Parameterize points, and attempt to fit curve
|
||||
|
@ -62,37 +62,37 @@ var PathFitter = Base.extend({
|
|||
split;
|
||||
// Try 4 iterations
|
||||
for (var i = 0; i < 4; i++) {
|
||||
var bezCurve = this.generateBezier(first, last, uPrime, tHat1, tHat2);
|
||||
var curve = this.generateBezier(first, last, uPrime, tan1, tan2);
|
||||
// Find max deviation of points to fitted curve
|
||||
var max = this.findMaxError(first, last, bezCurve, uPrime);
|
||||
var max = this.findMaxError(first, last, curve, uPrime);
|
||||
if (max.error < this.error) {
|
||||
this.addCurve(bezCurve);
|
||||
this.addCurve(curve);
|
||||
return;
|
||||
}
|
||||
split = max.index;
|
||||
// If error not too large, try some reparameterization and iteration
|
||||
if (max.error >= this.iterationError || max.error >= prevMaxError)
|
||||
break;
|
||||
uPrime = this.reparameterize(first, last, uPrime, bezCurve);
|
||||
uPrime = this.reparameterize(first, last, uPrime, curve);
|
||||
prevMaxError = max.error;
|
||||
}
|
||||
// Fitting failed -- split at max error point and fit recursively
|
||||
var V1 = this.points[split - 1].subtract(this.points[split]),
|
||||
V2 = this.points[split].subtract(this.points[split + 1]),
|
||||
tHatCenter = V1.add(V2).divide(2).normalize();
|
||||
this.fitCubic(first, split, tHat1, tHatCenter);
|
||||
this.fitCubic(split, last, tHatCenter.negate(), tHat2);
|
||||
tanCenter = V1.add(V2).divide(2).normalize();
|
||||
this.fitCubic(first, split, tan1, tanCenter);
|
||||
this.fitCubic(split, last, tanCenter.negate(), tan2);
|
||||
},
|
||||
|
||||
addCurve: function(bezCurve) {
|
||||
addCurve: function(curve) {
|
||||
var prev = this.segments[this.segments.length - 1];
|
||||
prev.setHandleOut(bezCurve[1].subtract(bezCurve[0]));
|
||||
prev.setHandleOut(curve[1].subtract(curve[0]));
|
||||
this.segments.push(
|
||||
new Segment(bezCurve[3], bezCurve[2].subtract(bezCurve[3])));
|
||||
new Segment(curve[3], curve[2].subtract(curve[3])));
|
||||
},
|
||||
|
||||
// Use least-squares method to find Bezier control points for region.
|
||||
generateBezier: function(first, last, uPrime, tHat1, tHat2) {
|
||||
generateBezier: function(first, last, uPrime, tan1, tan2) {
|
||||
var nPts = last - first + 1,
|
||||
pt1 = this.points[first],
|
||||
pt2 = this.points[last];
|
||||
|
@ -109,8 +109,8 @@ var PathFitter = Base.extend({
|
|||
b1 = b * t,
|
||||
b2 = b * u,
|
||||
b3 = u * u * u,
|
||||
a1 = tHat1.normalize(b1),
|
||||
a2 = tHat2.normalize(b2),
|
||||
a1 = tan1.normalize(b1),
|
||||
a2 = tan2.normalize(b2),
|
||||
tmp = this.points[first + i]
|
||||
.subtract(pt1.multiply(b0 + b1))
|
||||
.subtract(pt2.multiply(b2 + b3));
|
||||
|
@ -162,40 +162,40 @@ var PathFitter = Base.extend({
|
|||
// positioned exactly at the first and last data points
|
||||
// Control points 1 and 2 are positioned an alpha distance out
|
||||
// on the tangent vectors, left and right, respectively
|
||||
return [pt1, pt1.add(tHat1.normalize(alpha_l)),
|
||||
pt2.add(tHat2.normalize(alpha_r)), pt2];
|
||||
return [pt1, pt1.add(tan1.normalize(alpha_l)),
|
||||
pt2.add(tan2.normalize(alpha_r)), pt2];
|
||||
},
|
||||
|
||||
// Given set of points and their parameterization, try to find
|
||||
// a better parameterization.
|
||||
reparameterize: function(first, last, u, bezCurve) {
|
||||
reparameterize: function(first, last, u, curve) {
|
||||
var uPrime = [];
|
||||
for (var i = first; i <= last; i++) {
|
||||
uPrime[i - first] = this.findRoot(bezCurve, this.points[i],
|
||||
uPrime[i - first] = this.findRoot(curve, this.points[i],
|
||||
u[i - first]);
|
||||
}
|
||||
return uPrime;
|
||||
},
|
||||
|
||||
// Use Newton-Raphson iteration to find better root.
|
||||
findRoot: function(Q, P, u) {
|
||||
var Q1 = [],
|
||||
Q2 = [];
|
||||
findRoot: function(curve, point, u) {
|
||||
var curve1 = [],
|
||||
curve2 = [];
|
||||
// Generate control vertices for Q'
|
||||
for (var i = 0; i <= 2; i++) {
|
||||
Q1[i] = Q[i + 1].subtract(Q[i]).multiply(3);
|
||||
curve1[i] = curve[i + 1].subtract(curve[i]).multiply(3);
|
||||
}
|
||||
// Generate control vertices for Q''
|
||||
for (var i = 0; i <= 1; i++) {
|
||||
Q2[i] = Q1[i + 1].subtract(Q1[i]).multiply(2);
|
||||
curve2[i] = curve1[i + 1].subtract(curve1[i]).multiply(2);
|
||||
}
|
||||
// Compute Q(u), Q'(u) and Q''(u)
|
||||
Q_u = this.evaluate(3, Q, u);
|
||||
Q1_u = this.evaluate(2, Q1, u);
|
||||
Q2_u = this.evaluate(1, Q2, u);
|
||||
// Compute f(u)/f'(u)
|
||||
var V = Q_u.subtract(P),
|
||||
df = Q1_u.dot(Q1_u) + V.dot(Q2_u);
|
||||
var pt = this.evaluate(3, curve, u),
|
||||
pt1 = this.evaluate(2, curve1, u),
|
||||
pt2 = this.evaluate(1, curve2, u),
|
||||
diff = pt.subtract(point),
|
||||
df = pt1.dot(pt1) + diff.dot(pt2);
|
||||
// Compute f(u) / f'(u)
|
||||
if (Math.abs(df) < Numerical.TOLERANCE)
|
||||
return u;
|
||||
// u = u - f(u) / f'(u)
|
||||
|
@ -203,16 +203,16 @@ var PathFitter = Base.extend({
|
|||
},
|
||||
|
||||
// Evaluate a Bezier curve at a particular parameter value
|
||||
evaluate: function(degree, V, t) {
|
||||
evaluate: function(degree, curve, t) {
|
||||
// Copy array
|
||||
var Vtemp = V.slice();
|
||||
var tmp = curve.slice();
|
||||
// Triangle computation
|
||||
for (var i = 1; i <= degree; i++) {
|
||||
for (var j = 0; j <= degree - i; j++) {
|
||||
Vtemp[j] = Vtemp[j].multiply(1 - t).add(Vtemp[j + 1].multiply(t));
|
||||
tmp[j] = tmp[j].multiply(1 - t).add(tmp[j + 1].multiply(t));
|
||||
}
|
||||
}
|
||||
return Vtemp[0];
|
||||
return tmp[0];
|
||||
},
|
||||
|
||||
// Assign parameter values to digitized points
|
||||
|
@ -230,11 +230,11 @@ var PathFitter = Base.extend({
|
|||
},
|
||||
|
||||
// Find the maximum squared distance of digitized points to fitted curve.
|
||||
findMaxError: function(first, last, bezCurve, u) {
|
||||
findMaxError: function(first, last, curve, u) {
|
||||
var index = Math.floor((last - first + 1) / 2),
|
||||
maxDist = 0;
|
||||
for (var i = first + 1; i < last; i++) {
|
||||
var P = this.evaluate(3, bezCurve, u[i - first]);
|
||||
var P = this.evaluate(3, curve, u[i - first]);
|
||||
var v = P.subtract(this.points[i]);
|
||||
var dist = v.x * v.x + v.y * v.y; // squared
|
||||
if (dist >= maxDist) {
|
||||
|
|
Loading…
Reference in a new issue