Merge branch 'fix-simplify-bug' of https://github.com/calamitas/paper.js into fix-simplify-bug

This commit is contained in:
Jürg Lehni 2015-04-04 15:35:37 +02:00
commit 66fbb9ee2a

View file

@ -80,13 +80,14 @@ var PathFitter = Base.extend({
// Parameterize points, and attempt to fit curve // Parameterize points, and attempt to fit curve
var uPrime = this.chordLengthParameterize(first, last), var uPrime = this.chordLengthParameterize(first, last),
maxError = Math.max(this.error, this.error * this.error), maxError = Math.max(this.error, this.error * this.error),
split; split,
parametersInOrder = true;
// Try 4 iterations // Try 4 iterations
for (var i = 0; i <= 4; i++) { for (var i = 0; i <= 4; i++) {
var curve = this.generateBezier(first, last, uPrime, tan1, tan2); var curve = this.generateBezier(first, last, uPrime, tan1, tan2);
// Find max deviation of points to fitted curve // Find max deviation of points to fitted curve
var max = this.findMaxError(first, last, curve, uPrime); var max = this.findMaxError(first, last, curve, uPrime);
if (max.error < this.error) { if (max.error < this.error && parametersInOrder) {
this.addCurve(curve); this.addCurve(curve);
return; return;
} }
@ -94,7 +95,7 @@ var PathFitter = Base.extend({
// If error not too large, try reparameterization and iteration // If error not too large, try reparameterization and iteration
if (max.error >= maxError) if (max.error >= maxError)
break; break;
this.reparameterize(first, last, uPrime, curve); parametersInOrder = this.reparameterize(first, last, uPrime, curve);
maxError = max.error; maxError = max.error;
} }
// Fitting failed -- split at max error point and fit recursively // Fitting failed -- split at max error point and fit recursively
@ -178,12 +179,23 @@ var PathFitter = Base.extend({
alpha1 = alpha2 = segLength / 3; alpha1 = alpha2 = segLength / 3;
} }
// First and last control points of the Bezier curve are // Check if the found control points are in the right order when
// positioned exactly at the first and last data points // projected onto the line through pt1 and pt2.
var line = pt2.subtract(pt1),
// Control points 1 and 2 are positioned an alpha distance out // Control points 1 and 2 are positioned an alpha distance out
// on the tangent vectors, left and right, respectively // on the tangent vectors, left and right, respectively
return [pt1, pt1.add(tan1.normalize(alpha1)), cp1Delta = tan1.normalize(alpha1),
pt2.add(tan2.normalize(alpha2)), pt2]; cp2Delta = tan2.normalize(alpha2);
if (cp1Delta.dot(line) - cp2Delta.dot(line) > segLength * segLength) {
// Fall back to the Wu/Barsky heuristic above.
alpha1 = alpha2 = segLength / 3;
cp1Delta = tan1.normalize(alpha1);
cp2Delta = tan2.normalize(alpha2);
}
// First and last control points of the Bezier curve are
// positioned exactly at the first and last data points
return [pt1, pt1.add(cp1Delta), pt2.add(cp2Delta), pt2];
}, },
// Given set of points and their parameterization, try to find // Given set of points and their parameterization, try to find
@ -192,6 +204,15 @@ var PathFitter = Base.extend({
for (var i = first; i <= last; i++) { for (var i = first; i <= last; i++) {
u[i - first] = this.findRoot(curve, this.points[i], u[i - first]); u[i - first] = this.findRoot(curve, this.points[i], u[i - first]);
} }
// Detect if the new parameterization has reordered the points.
// In that case, we would fit the points of the path in the
// wrong order.
for (var j = 1, jLen = u.length; j < jLen; j++) {
if (u[j] <= u[j - 1]) {
return false;
}
}
return true;
}, },
// Use Newton-Raphson iteration to find better root. // Use Newton-Raphson iteration to find better root.