Move all winding related code to PathItem.Boolean and introduce __options.booleanOperations switch.

Fall back to __options.nativeContains if __options.booleanOperations is not included.
This commit is contained in:
Jürg Lehni 2014-02-20 19:50:37 +01:00
parent 81b3b756c9
commit 64fa328f65
5 changed files with 284 additions and 277 deletions

View file

@ -31,7 +31,7 @@ then
fi
./preprocess.sh $MODE ../src/paper.js "-i '../src/constants.js'" ../dist/paper-full.js
./preprocess.sh $MODE ../src/paper.js "-o '{ \"paperscript\": false, \"palette\": false }' -i '../src/constants.js'" ../dist/paper-core.js
./preprocess.sh $MODE ../src/paper.js "-o '{ \"paperScript\": false, \"palette\": false }' -i '../src/constants.js'" ../dist/paper-core.js
./preprocess.sh $MODE ../src/paper.js "-o '{ \"environment\": \"node\" }' -i '../src/constants.js'" ../dist/paper-node.js
# Remove the existing file and copy paper-full.js to paper.js now

View file

@ -21,8 +21,9 @@ var __options = {
stats: true,
svg: true,
fatline: true,
paperscript: true,
palette: true,
booleanOperations: true,
nativeContains: false,
paperScript: true,
palette: true,
debug: false
};

View file

@ -83,7 +83,9 @@ var paper = new function(undefined) {
/*#*/ include('path/CompoundPath.js');
/*#*/ include('path/PathFlattener.js');
/*#*/ include('path/PathFitter.js');
/*#*/ if (__options.booleanOperations) {
/*#*/ include('path/PathItem.Boolean.js');
/*#*/ } // __options.booleanOperations
/*#*/ include('text/TextItem.js');
/*#*/ include('text/PointText.js');
@ -120,9 +122,9 @@ var paper = new function(undefined) {
/*#*/ include('tool/Tool.js');
// Http is used both for PaperScript and SVGImport
/*#*/ if (__options.paperscript || __options.svg) {
/*#*/ if (__options.paperScript || __options.svg) {
/*#*/ include('net/Http.js');
/*#*/ } // __options.paperscript || __options.svg
/*#*/ } // __options.paperScript || __options.svg
/*#*/ } // __options.environment == 'browser'
/*#*/ include('canvas/CanvasProvider.js');
@ -138,9 +140,9 @@ var paper = new function(undefined) {
/*#*/ include('svg/SVGImport.js');
/*#*/ } // __options.svg
/*#*/ if (__options.paperscript) {
/*#*/ if (__options.paperScript) {
/*#*/ include('core/PaperScript.js');
/*#*/ } // __options.paperscript
/*#*/ } // __options.paperScript
/*#*/ include('export.js');
return paper;

View file

@ -90,7 +90,7 @@ PathItem.inject(/** @lends PathItem# */{
if (path2 && !(subtract ^ path2.isClockwise()))
path2.reverse();
// Split curves at intersections on both paths.
PathItem._splitPath(path1.getIntersections(path2 || path1, true));
PathItem._splitPath(path1.getIntersections(path2, true));
var chain = [],
windings = [],
@ -182,6 +182,20 @@ PathItem.inject(/** @lends PathItem# */{
return result.reduce();
},
/**
* Returns the winding contribution of the given point with respect to this
* PathItem.
*
* @param {Point} point the location for which to determine the winding
* direction
* @param {Boolean} horizontal wether we need to consider this point as
* part of a horizontal curve
* @return {Number} the winding number
*/
_getWinding: function(point, horizontal) {
return PathItem._getWinding(point, this._getMonoCurves(), horizontal);
},
/**
* {@grouptitle Boolean Path Operations}
*
@ -245,5 +259,245 @@ PathItem.inject(/** @lends PathItem# */{
*/
divide: function(path) {
return new Group([this.subtract(path), this.intersect(path)]);
},
// Mess with indentation in order to get more line-space below...
statics: {
/**
* Private method for splitting a PathItem at the given intersections.
* The routine works for both self intersections and intersections
* between PathItems.
* @param {CurveLocation[]} intersections Array of CurveLocation objects
*/
_splitPath: function(intersections) {
var linearSegments;
function resetLinear() {
// Reset linear segments if they were part of a linear curve
// and if we are done with the entire curve.
for (var i = 0, l = linearSegments.length; i < l; i++) {
var segment = linearSegments[i];
// FIXME: Don't reset the appropriate handle if the intersection
// was on t == 0 && t == 1.
segment._handleOut.set(0, 0);
segment._handleIn.set(0, 0);
}
}
for (var i = intersections.length - 1, curve, prevLoc; i >= 0; i--) {
var loc = intersections[i],
t = loc._parameter;
// Check if we are splitting same curve multiple times
if (prevLoc && prevLoc._curve === loc._curve) {
// Scale parameter after previous split.
t /= prevLoc._parameter;
} else {
if (linearSegments)
resetLinear();
curve = loc._curve;
linearSegments = curve.isLinear() && [];
}
var newCurve,
segment;
// Split the curve at t, while ignoring linearity of curves
if (newCurve = curve.divide(t, true, true)) {
segment = newCurve._segment1;
curve = newCurve.getPrevious();
} else {
segment = t < 0.5 ? curve._segment1 : curve._segment2;
}
// Link the new segment with the intersection on the other curve
segment._intersection = loc.getIntersection();
loc._segment = segment;
if (linearSegments)
linearSegments.push(segment);
prevLoc = loc;
}
if (linearSegments)
resetLinear();
},
/**
* Private static method that returns the winding contribution of the
* given point with respect to a given set of monotone curves.
*/
_getWinding: function _getWinding(point, curves, horizontal) {
var tolerance = /*#=*/ Numerical.TOLERANCE,
x = point.x,
y = point.y,
xAfter = x + tolerance,
xBefore = x - tolerance,
windLeft = 0,
windRight = 0,
roots = [],
abs = Math.abs;
// Absolutely horizontal curves may return wrong results, since
// the curves are monotonic in y direction and this is an
// indeterminate state.
if (horizontal) {
var yTop = -Infinity,
yBottom = Infinity;
// Find the closest top and bottom intercepts for the same vertical
// line.
for (var i = 0, l = curves.length; i < l; i++) {
v = curves[i];
if (Curve.solveCubic(v, 0, x, roots, 0, 1) > 0) {
for (var j = roots.length - 1; j >= 0; j--) {
var y0 = Curve.evaluate(v, roots[j], 0).y;
if (y0 > y + tolerance && y0 < yBottom) {
yBottom = y0;
} else if (y0 < y - tolerance && y0 > yTop) {
yTop = y0;
}
}
}
}
// Shift the point lying on the horizontal curves by
// half of closest top and bottom intercepts.
yTop = (yTop + y) / 2;
yBottom = (yBottom + y) / 2;
if (yTop > -Infinity)
windLeft = _getWinding(new Point(x, yTop), curves);
if (yBottom < Infinity)
windRight = _getWinding(new Point(x, yBottom), curves);
} else {
// Find the winding number for right side of the curve, inclusive of
// the curve itself, while tracing along its +-x direction.
for (var i = 0, l = curves.length; i < l; i++) {
var v = curves[i];
if (Curve.solveCubic(v, 1, y, roots, 0, 1 - tolerance) === 1) {
var t = roots[0],
x0 = Curve.evaluate(v, t, 0).x,
slope = Curve.evaluate(v, t, 1).y;
// Take care of cases where the curve and the preceeding
// curve merely touches the ray towards +-x direction, but
// proceeds to the same side of the ray. This essentially is
// not a crossing.
// NOTE: The previous curve is stored at v[9], see
// Path#_getMonoCurves() for details.
if (abs(slope) < tolerance && !Curve.isLinear(v)
|| t < tolerance
&& slope * Curve.evaluate(v[9], t, 1).y < 0) {
// TODO: Handle stationary points here!
} else if (x0 <= xBefore) {
windLeft += v[8];
} else if (x0 >= xAfter) {
windRight += v[8];
}
}
}
}
return Math.max(abs(windLeft), abs(windRight));
},
/**
* Private method to trace closed contours from a set of segments according
* to a set of constraintswinding contribution and a custom operator.
*
* @param {Segment[]} segments Array of 'seed' segments for tracing closed
* contours
* @param {Function} the operator function that receives as argument the
* winding number contribution of a curve and returns a boolean value
* indicating whether the curve should be included in the final contour or
* not
* @return {Path[]} the contours traced
*/
_tracePaths: function(segments, operator, selfIx) {
// Choose a default operator which will return all contours
operator = operator || function() {
return true;
};
var paths = [],
// Values for getTangentAt() that are almost 0 and 1.
// TODO: Correctly support getTangentAt(0) / (1)?
ZERO = 1e-3,
ONE = 1 - 1e-3;
for (var i = 0, seg, startSeg, l = segments.length; i < l; i++) {
seg = startSeg = segments[i];
if (seg._visited || !operator(seg._winding))
continue;
var path = new Path({ insert: false }),
inter = seg._intersection,
startInterSeg = inter && inter._segment,
added = false, // Wether a first segment as added already
dir = 1;
do {
var handleIn = dir > 0 ? seg._handleIn : seg._handleOut,
handleOut = dir > 0 ? seg._handleOut : seg._handleIn,
interSeg;
// If the intersection segment is valid, try switching to
// it, with an appropriate direction to continue traversal.
// Else, stay on the same contour.
if (added && (!operator(seg._winding) || selfIx)
&& (inter = seg._intersection)
&& (interSeg = inter._segment)
&& interSeg !== startSeg) {
var c1 = seg.getCurve();
if (dir > 0)
c1 = c1.getPrevious();
var t1 = c1.getTangentAt(dir < 1 ? ZERO : ONE, true),
// Get both curves at the intersection (except the entry
// curves) along with their winding values and tangents.
c4 = interSeg.getCurve(),
c3 = c4.getPrevious(),
t3 = c3.getTangentAt(ONE, true),
t4 = c4.getTangentAt(ZERO, true),
// Cross product of the entry and exit tangent vectors
// at the intersection, will let us select the correct
// countour to traverse next.
w3 = t1.cross(t3),
w4 = t1.cross(t4);
// Do not attempt to switch contours if we aren't absolutely
// sure that there is a possible candidate.
if (w3 * w4 !== 0) {
var curve = w3 < w4 ? c3 : c4,
nextCurve = operator(curve._segment1._winding)
? curve
: w3 < w4 ? c4 : c3,
nextSeg = nextCurve._segment1;
dir = nextCurve === c3 ? -1 : 1;
// If we didn't manage to find a suitable direction for
// next contour to traverse, stay on the same contour.
if (nextSeg._visited && seg._path !== nextSeg._path
|| !operator(nextSeg._winding)) {
dir = 1;
} else {
// Switch to the intersection segment.
seg._visited = interSeg._visited;
seg = interSeg;
if (nextSeg._visited)
dir = 1;
}
} else {
dir = 1;
}
handleOut = dir > 0 ? seg._handleOut : seg._handleIn;
}
// Add the current segment to the path, and mark the added
// segment as visited.
path.add(new Segment(seg._point, added && handleIn, handleOut));
added = true;
seg._visited = true;
// Move to the next segment according to the traversal direction
seg = dir > 0 ? seg.getNext() : seg. getPrevious();
} while (seg && !seg._visited
&& seg !== startSeg && seg !== startInterSeg
&& (seg._intersection || operator(seg._winding)));
// Finish with closing the paths if necessary, correctly linking up
// curves etc.
if (seg && (seg === startSeg || seg === startInterSeg)) {
path.firstSegment.setHandleIn((seg === startInterSeg
? startInterSeg : seg)._handleIn);
path.setClosed(true);
} else {
path.lastSegment._handleOut.set(0, 0);
}
// Add the path to the result.
// Try to avoid stray segments and incomplete paths.
var count = path._segments.length;
if (count > 2 || count === 2 && path._closed && !path.isPolygon())
paths.push(path);
}
return paths;
}
});
}});

View file

@ -63,18 +63,22 @@ var PathItem = Item.extend(/** @lends PathItem# */{
* }
*/
getIntersections: function(path, _expand) {
// NOTE: For self-intersection, path is null. This means you can also
// just call path.getIntersections() without an argument to get self
// intersections.
if (this === path)
path = null;
// First check the bounds of the two paths. If they don't intersect,
// we don't need to iterate through their curves.
var selfOp = this === path;
if (!selfOp && !this.getBounds().touches(path.getBounds()))
if (path && !this.getBounds().touches(path.getBounds()))
return [];
var locations = [],
curves1 = this.getCurves(),
curves2 = selfOp ? curves1 : path.getCurves(),
curves2 = path ? path.getCurves() : curves1,
matrix1 = this._matrix.orNullIfIdentity(),
matrix2 = selfOp ? matrix1 : path._matrix.orNullIfIdentity(),
matrix2 = path ? path._matrix.orNullIfIdentity() : matrix1,
length1 = curves1.length,
length2 = selfOp ? length1 : curves2.length,
length2 = path ? curves2.length : length1,
values2 = [],
ZERO = /*#=*/ Numerical.EPSILON,
ONE = 1 - /*#=*/ Numerical.EPSILON;
@ -82,8 +86,8 @@ var PathItem = Item.extend(/** @lends PathItem# */{
values2[i] = curves2[i].getValues(matrix2);
for (var i = 0; i < length1; i++) {
var curve1 = curves1[i],
values1 = selfOp ? values2[i] : curve1.getValues(matrix1);
if (selfOp) {
values1 = path ? curve1.getValues(matrix1) : values2[i];
if (!path) {
// First check for self-intersections within the same curve
var seg1 = curve1.getSegment1(),
seg2 = curve1.getSegment2(),
@ -112,13 +116,14 @@ var PathItem = Item.extend(/** @lends PathItem# */{
}
}
}
// Check for intersections with other curves
for (var j = selfOp ? i + 1 : 0; j < length2; j++) {
// Check for intersections with other curves. For self intersection,
// we can start at i + 1 instead of 0
for (var j = path ? 0 : i + 1; j < length2; j++) {
Curve.getIntersections(values1, values2[j], curve1,
curves2[j], locations,
// Avoid end point intersections on consecutive curves
// when self intersecting.
selfOp && (j === i + 1 || j === length2 - 1 && i === 0)
!path && (j === i + 1 || j === length2 - 1 && i === 0)
? ZERO : 0, // tMin
ONE); // tMax
}
@ -278,24 +283,10 @@ var PathItem = Item.extend(/** @lends PathItem# */{
return !(this.hasFill() && this.hasStroke());
},
/**
* Returns the winding contribution of the given point with respect to this
* PathItem.
*
* @param {Point} point the location for which to determine the winding
* direction
* @param {Boolean} horizontal wether we need to consider this point as
* part of a horizontal curve
* @return {Number} the winding number
*/
_getWinding: function(point, horizontal) {
return PathItem._getWinding(point, this._getMonoCurves(), horizontal);
},
_contains: function(point) {
// NOTE: point is reverse transformed by _matrix, so we don't need to
// apply here.
/*#*/ if (__options.nativeContains) {
/*#*/ if (__options.nativeContains || !__options.booleanOperations) {
// To compare with native canvas approach:
var ctx = CanvasProvider.getContext(1, 1);
// Abuse clip = true to get a shape for ctx.isPointInPath().
@ -303,253 +294,12 @@ var PathItem = Item.extend(/** @lends PathItem# */{
var res = ctx.isPointInPath(point.x, point.y, this.getWindingRule());
CanvasProvider.release(ctx);
return res;
/*#*/ } else { // !__options.nativeContains
/*#*/ } else { // !__options.nativeContains && __options.booleanOperations
var winding = this._getWinding(point);
return !!(this.getWindingRule() === 'evenodd' ? winding & 1 : winding);
/*#*/ } // !__options.nativeContains
/*#*/ } // !__options.nativeContains && __options.booleanOperations
},
// Mess with indentation in order to get more line-space below...
statics: {
/**
* Private method for splitting a PathItem at the given intersections.
* The routine works for both self intersections and intersections
* between PathItems.
* @param {CurveLocation[]} intersections Array of CurveLocation objects
*/
_splitPath: function(intersections) {
var linearSegments;
function resetLinear() {
// Reset linear segments if they were part of a linear curve
// and if we are done with the entire curve.
for (var i = 0, l = linearSegments.length; i < l; i++) {
var segment = linearSegments[i];
// FIXME: Don't reset the appropriate handle if the intersection
// was on t == 0 && t == 1.
segment._handleOut.set(0, 0);
segment._handleIn.set(0, 0);
}
}
for (var i = intersections.length - 1, curve, prevLoc; i >= 0; i--) {
var loc = intersections[i],
t = loc._parameter;
// Check if we are splitting same curve multiple times
if (prevLoc && prevLoc._curve === loc._curve) {
// Scale parameter after previous split.
t /= prevLoc._parameter;
} else {
if (linearSegments)
resetLinear();
curve = loc._curve;
linearSegments = curve.isLinear() && [];
}
var newCurve,
segment;
// Split the curve at t, while ignoring linearity of curves
if (newCurve = curve.divide(t, true, true)) {
segment = newCurve._segment1;
curve = newCurve.getPrevious();
} else {
segment = t < 0.5 ? curve._segment1 : curve._segment2;
}
// Link the new segment with the intersection on the other curve
segment._intersection = loc.getIntersection();
loc._segment = segment;
if (linearSegments)
linearSegments.push(segment);
prevLoc = loc;
}
if (linearSegments)
resetLinear();
},
/**
* Private static method that returns the winding contribution of the
* given point with respect to a given set of monotone curves.
*/
_getWinding: function _getWinding(point, curves, horizontal) {
var tolerance = /*#=*/ Numerical.TOLERANCE,
x = point.x,
y = point.y,
xAfter = x + tolerance,
xBefore = x - tolerance,
windLeft = 0,
windRight = 0,
roots = [],
abs = Math.abs;
// Absolutely horizontal curves may return wrong results, since
// the curves are monotonic in y direction and this is an
// indeterminate state.
if (horizontal) {
var yTop = -Infinity,
yBottom = Infinity;
// Find the closest top and bottom intercepts for the same vertical
// line.
for (var i = 0, l = curves.length; i < l; i++) {
v = curves[i];
if (Curve.solveCubic(v, 0, x, roots, 0, 1) > 0) {
for (var j = roots.length - 1; j >= 0; j--) {
var y0 = Curve.evaluate(v, roots[j], 0).y;
if (y0 > y + tolerance && y0 < yBottom) {
yBottom = y0;
} else if (y0 < y - tolerance && y0 > yTop) {
yTop = y0;
}
}
}
}
// Shift the point lying on the horizontal curves by
// half of closest top and bottom intercepts.
yTop = (yTop + y) / 2;
yBottom = (yBottom + y) / 2;
if (yTop > -Infinity)
windLeft = _getWinding(new Point(x, yTop), curves);
if (yBottom < Infinity)
windRight = _getWinding(new Point(x, yBottom), curves);
} else {
// Find the winding number for right side of the curve, inclusive of
// the curve itself, while tracing along its +-x direction.
for (var i = 0, l = curves.length; i < l; i++) {
var v = curves[i];
if (Curve.solveCubic(v, 1, y, roots, 0, 1 - tolerance) === 1) {
var t = roots[0],
x0 = Curve.evaluate(v, t, 0).x,
slope = Curve.evaluate(v, t, 1).y;
// Take care of cases where the curve and the preceeding
// curve merely touches the ray towards +-x direction, but
// proceeds to the same side of the ray. This essentially is
// not a crossing.
// NOTE: The previous curve is stored at v[9], see
// Path#_getMonoCurves() for details.
if (abs(slope) < tolerance && !Curve.isLinear(v)
|| t < tolerance
&& slope * Curve.evaluate(v[9], t, 1).y < 0) {
// TODO: Handle stationary points here!
} else if (x0 <= xBefore) {
windLeft += v[8];
} else if (x0 >= xAfter) {
windRight += v[8];
}
}
}
}
return Math.max(abs(windLeft), abs(windRight));
},
/**
* Private method to trace closed contours from a set of segments according
* to a set of constraintswinding contribution and a custom operator.
*
* @param {Segment[]} segments Array of 'seed' segments for tracing closed
* contours
* @param {Function} the operator function that receives as argument the
* winding number contribution of a curve and returns a boolean value
* indicating whether the curve should be included in the final contour or
* not
* @return {Path[]} the contours traced
*/
_tracePaths: function(segments, operator, selfIx) {
// Choose a default operator which will return all contours
operator = operator || function() {
return true;
};
var paths = [],
// Values for getTangentAt() that are almost 0 and 1.
// TODO: Correctly support getTangentAt(0) / (1)?
ZERO = 1e-3,
ONE = 1 - 1e-3;
for (var i = 0, seg, startSeg, l = segments.length; i < l; i++) {
seg = startSeg = segments[i];
if (seg._visited || !operator(seg._winding))
continue;
var path = new Path({ insert: false }),
inter = seg._intersection,
startInterSeg = inter && inter._segment,
added = false, // Wether a first segment as added already
dir = 1;
do {
var handleIn = dir > 0 ? seg._handleIn : seg._handleOut,
handleOut = dir > 0 ? seg._handleOut : seg._handleIn,
interSeg;
// If the intersection segment is valid, try switching to
// it, with an appropriate direction to continue traversal.
// Else, stay on the same contour.
if (added && (!operator(seg._winding) || selfIx)
&& (inter = seg._intersection)
&& (interSeg = inter._segment)
&& interSeg !== startSeg) {
var c1 = seg.getCurve();
if (dir > 0)
c1 = c1.getPrevious();
var t1 = c1.getTangentAt(dir < 1 ? ZERO : ONE, true),
// Get both curves at the intersection (except the entry
// curves) along with their winding values and tangents.
c4 = interSeg.getCurve(),
c3 = c4.getPrevious(),
t3 = c3.getTangentAt(ONE, true),
t4 = c4.getTangentAt(ZERO, true),
// Cross product of the entry and exit tangent vectors
// at the intersection, will let us select the correct
// countour to traverse next.
w3 = t1.cross(t3),
w4 = t1.cross(t4);
// Do not attempt to switch contours if we aren't absolutely
// sure that there is a possible candidate.
if (w3 * w4 !== 0) {
var curve = w3 < w4 ? c3 : c4,
nextCurve = operator(curve._segment1._winding)
? curve
: w3 < w4 ? c4 : c3,
nextSeg = nextCurve._segment1;
dir = nextCurve === c3 ? -1 : 1;
// If we didn't manage to find a suitable direction for
// next contour to traverse, stay on the same contour.
if (nextSeg._visited && seg._path !== nextSeg._path
|| !operator(nextSeg._winding)) {
dir = 1;
} else {
// Switch to the intersection segment.
seg._visited = interSeg._visited;
seg = interSeg;
if (nextSeg._visited)
dir = 1;
}
} else {
dir = 1;
}
handleOut = dir > 0 ? seg._handleOut : seg._handleIn;
}
// Add the current segment to the path, and mark the added
// segment as visited.
path.add(new Segment(seg._point, added && handleIn, handleOut));
added = true;
seg._visited = true;
// Move to the next segment according to the traversal direction
seg = dir > 0 ? seg.getNext() : seg. getPrevious();
} while (seg && !seg._visited
&& seg !== startSeg && seg !== startInterSeg
&& (seg._intersection || operator(seg._winding)));
// Finish with closing the paths if necessary, correctly linking up
// curves etc.
if (seg && (seg === startSeg || seg === startInterSeg)) {
path.firstSegment.setHandleIn((seg === startInterSeg
? startInterSeg : seg)._handleIn);
path.setClosed(true);
} else {
path.lastSegment._handleOut.set(0, 0);
}
// Add the path to the result.
// Try to avoid stray segments and incomplete paths.
var count = path._segments.length;
if (count > 2 || count === 2 && path._closed && !path.isPolygon())
paths.push(path);
}
return paths;
}
}
/**
* Smooth bezier curves without changing the amount of segments or their
* points, by only smoothing and adjusting their handle points, for both