Implement improved reorientation of paths, that can also be used by non-crossing boolean operations.

This commit is contained in:
iconexperience 2016-12-17 18:43:48 +01:00
parent 4281800585
commit 61df327bc2

View file

@ -54,7 +54,7 @@ PathItem.inject(new function() {
var res = path.clone(false).reduce({ simplify: true })
.transform(null, true, true);
return resolve
? res.resolveCrossings().reorient(res.getFillRule() === 'nonzero')
? res.resolveCrossings().reorient(res.getFillRule() === 'nonzero', true)
: res;
}
@ -107,9 +107,31 @@ PathItem.inject(new function() {
curves = [],
paths;
// When there are no crossings, and the two paths are not contained
// within each other, the result can be known ahead of tracePaths(),
// When there are no crossings, the result can be known ahead of tracePaths(),
// largely simplifying the processing required:
if (!crossings.length) {
// the paths have been reoriented, therefore they have alternate
// windings.
var insideWindings =
operator.unite ? [1, 2] :
operator.subtract ? [1] :
operator.intersect ? [2] :
operator.exclude ? [1] :
[];
if (paths2 && operator.exclude) {
for (var i = 0; i < paths2.length; i++) {
paths2[i].reverse();
}
}
var reorientedPaths = reorientPaths(
paths2 ? paths1.concat(paths2) : paths1,
function(w) {return insideWindings.indexOf(w) >= 0;}
);
paths = [
new CompoundPath({children: reorientedPaths, insert: false})
];
}
/*
if (!crossings.length) {
// If we have two operands, check their bounds to find cases where
// one path is fully contained in another. These cases cannot be
@ -136,7 +158,7 @@ PathItem.inject(new function() {
: operator.intersect ? [new Path(Item.NO_INSERT)]
: null;
}
}
}*/
function collect(paths) {
for (var i = 0, l = paths.length; i < l; i++) {
@ -243,6 +265,93 @@ PathItem.inject(new function() {
}
}
/**
* Reorients the specified paths.
*
* windingInsideFn is a function which determines if the inside of a path
* is filled. For non-zero fill rule this function would be implemented as
* follows:
*
* windingInsideFn = function(w) {
* return w != 0;
* }
*
* If clockwise is defined, the orientation of the root paths will be set to
* the orientation specified by clockwise. Otherwise the orientation of the
* first root child (which is the largest child) will be used.
*
* @param paths
* @param windingInsideFn
* @param clockwise (optional)
* @returns {*}
*/
function reorientPaths(paths, windingInsideFn, clockwise) {
var length = paths && paths.length;
if (length) {
var lookup = Base.each(paths, function (path, i) {
// Build a lookup table with information for each path's
// original index and winding contribution.
this[path._id] = {
winding: path.isClockwise() ? 1 : -1,
index: i
};
}, {}),
// Now sort the paths by their areas, from large to small.
sorted = paths.slice().sort(function (a, b) {
return Math.abs(b.getArea()) - Math.abs(a.getArea());
}),
// Get reference to the first, largest path and insert it
// already.
first = sorted[0];
if (clockwise == null)
clockwise = first.isClockwise();
// determine winding for each path
for (var i = 0; i < length; i++) {
var path1 = sorted[i],
entry1 = lookup[path1._id],
point = path1.getInteriorPoint(),
containerWinding = 0;
for (var j = i - 1; j >= 0; j--) {
var path2 = sorted[j];
// We run through the paths from largest to smallest,
// meaning that for any current path, all potentially
// containing paths have already been processed and
// their orientation has been fixed. Since we want to
// achieve alternating orientation of contained paths,
// all we have to do is to find one include path that
// contains the current path, and then set the
// orientation to the opposite of the containing path.
if (path2.contains(point)) {
var entry2 = lookup[path2._id];
entry1.newContainer = entry2.exclude ? entry2.newContainer : path2;
containerWinding = entry2.winding;
entry1.winding += containerWinding;
break;
}
}
// only keep paths if the insideness changes when crossing the
// path, e.g. the inside of the path is filled and the outside
// not filled (or vice versa).
if (windingInsideFn(entry1.winding) == windingInsideFn(containerWinding)) {
entry1.exclude = true;
} else {
// If the containing path is not excluded, we're
// done searching for the orientation defining path.
path1.setClockwise(entry1.newContainer ?
!entry1.newContainer.isClockwise() : clockwise);
}
}
}
// remove the excluded paths from the array
for (var i = length - 1; i >= 0; i--) {
if (lookup[paths[i]._id].exclude) {
paths.splice(i, 1);
}
}
return paths;
}
/**
* Divides the path-items at the given locations.
*
@ -615,7 +724,7 @@ PathItem.inject(new function() {
// from the point (horizontal or vertical), based on the
// curve's direction at that point. If the tangent is less
// than 45°, cast the ray vertically, else horizontally.
dir = abs(curve.getTangentAtTime(t).normalize().y)
dir = abs(curve.getTangentAtTime(t).normalize().y)
< Math.SQRT1_2 ? 1 : 0;
if (parent instanceof CompoundPath)
path = parent;
@ -1103,76 +1212,25 @@ PathItem.inject(new function() {
* discarding sub-paths that do not contribute to the final result
* @return {PahtItem} a reference to the item itself, reoriented
*/
reorient: function(nonZero) {
var children = this._children,
length = children && children.length;
if (length > 1) {
// Build a lookup table with information for each path's
// original index and winding contribution.
var lookup = Base.each(children, function(path, i) {
this[path._id] = {
winding: path.isClockwise() ? 1 : -1,
index: i
};
}, {}),
// Now sort the paths by their areas, from large to small.
sorted = this.removeChildren().sort(function (a, b) {
return abs(b.getArea()) - abs(a.getArea());
}),
// Get reference to the first, largest path and insert it
// already.
first = sorted[0],
paths = [];
// Always insert paths at their original index. With exclusion,
// this produces null entries, but #setChildren() handles those.
paths[lookup[first._id].index] = first;
// Walk through the sorted paths, from largest to smallest.
// Skip the first path, as it is already added.
for (var i1 = 1; i1 < length; i1++) {
var path1 = sorted[i1],
entry1 = lookup[path1._id],
point = path1.getInteriorPoint(),
isContained = false,
container = null,
exclude = false;
for (var i2 = i1 - 1; i2 >= 0 && !container; i2--) {
var path2 = sorted[i2];
// We run through the paths from largest to smallest,
// meaning that for any current path, all potentially
// containing paths have already been processed and
// their orientation has been fixed. Since we want to
// achieve alternating orientation of contained paths,
// all we have to do is to find one include path that
// contains the current path, and then set the
// orientation to the opposite of the containing path.
if (path2.contains(point)) {
var entry2 = lookup[path2._id];
if (nonZero && !isContained) {
entry1.winding += entry2.winding;
// Remove path if rule is nonzero and winding
// of path and containing path is not zero.
if (entry1.winding && entry2.winding) {
exclude = entry1.exclude = true;
break;
}
}
isContained = true;
// If the containing path is not excluded, we're
// done searching for the orientation defining path.
container = !entry2.exclude && path2;
reorient: function(nonZero, clockwise) {
var children = this._children;
if (children && children.length) {
children = this.removeChildren();
reorientPaths(children,
nonZero ?
function (w) {
// true if winding is non-zero
return !w
}
}
if (!exclude) {
// Set to the opposite orientation of containing path,
// or the same orientation as the first path if the path
// is not contained in any other path.
path1.setClockwise(container
? !container.isClockwise()
: first.isClockwise());
paths[entry1.index] = path1;
}
}
this.setChildren(paths);
: function (w) {
// true if winding is even
return !(w % 2)
},
clockwise
);
this.setChildren(children);
} else if (clockwise != null) {
this.setClockwise(clockwise);
}
return this;
},